833 research outputs found

    On a class of distributions stable under random summation

    Full text link
    We investigate a family of distributions having a property of stability-under-addition, provided that the number ν\nu of added-up random variables in the random sum is also a random variable. We call the corresponding property a \,ν\nu-stability and investigate the situation with the semigroup generated by the generating function of ν\nu is commutative. Using results from the theory of iterations of analytic functions, we show that the characteristic function of such a ν\nu-stable distribution can be represented in terms of Chebyshev polynomials, and for the case of ν\nu-normal distribution, the resulting characteristic function corresponds to the hyperbolic secant distribution. We discuss some specific properties of the class and present particular examples.Comment: 12 pages, 1 figur

    Statistical Consequences of Devroye Inequality for Processes. Applications to a Class of Non-Uniformly Hyperbolic Dynamical Systems

    Full text link
    In this paper, we apply Devroye inequality to study various statistical estimators and fluctuations of observables for processes. Most of these observables are suggested by dynamical systems. These applications concern the co-variance function, the integrated periodogram, the correlation dimension, the kernel density estimator, the speed of convergence of empirical measure, the shadowing property and the almost-sure central limit theorem. We proved in \cite{CCS} that Devroye inequality holds for a class of non-uniformly hyperbolic dynamical systems introduced in \cite{young}. In the second appendix we prove that, if the decay of correlations holds with a common rate for all pairs of functions, then it holds uniformly in the function spaces. In the last appendix we prove that for the subclass of one-dimensional systems studied in \cite{young} the density of the absolutely continuous invariant measure belongs to a Besov space.Comment: 33 pages; companion of the paper math.DS/0412166; corrected version; to appear in Nonlinearit

    Flows on Graphs with Random Capacities

    Full text link
    We investigate flows on graphs whose links have random capacities. For binary trees we derive the probability distribution for the maximal flow from the root to a leaf, and show that for infinite trees it vanishes beyond a certain threshold that depends on the distribution of capacities. We then examine the maximal total flux from the root to the leaves. Our methods generalize to simple graphs with loops, e.g., to hierarchical lattices and to complete graphs.Comment: 8 pages, 6 figure

    Monge Distance between Quantum States

    Get PDF
    We define a metric in the space of quantum states taking the Monge distance between corresponding Husimi distributions (Q--functions). This quantity fulfills the axioms of a metric and satisfies the following semiclassical property: the distance between two coherent states is equal to the Euclidean distance between corresponding points in the classical phase space. We compute analytically distances between certain states (coherent, squeezed, Fock and thermal) and discuss a scheme for numerical computation of Monge distance for two arbitrary quantum states.Comment: 9 pages in LaTex - RevTex + 2 figures in ps. submitted to Phys. Rev.

    New distance measures for classifying X-ray astronomy data into stellar classes

    Full text link
    The classification of the X-ray sources into classes (such as extragalactic sources, background stars, ...) is an essential task in astronomy. Typically, one of the classes corresponds to extragalactic radiation, whose photon emission behaviour is well characterized by a homogeneous Poisson process. We propose to use normalized versions of the Wasserstein and Zolotarev distances to quantify the deviation of the distribution of photon interarrival times from the exponential class. Our main motivation is the analysis of a massive dataset from X-ray astronomy obtained by the Chandra Orion Ultradeep Project (COUP). This project yielded a large catalog of 1616 X-ray cosmic sources in the Orion Nebula region, with their series of photon arrival times and associated energies. We consider the plug-in estimators of these metrics, determine their asymptotic distributions, and illustrate their finite-sample performance with a Monte Carlo study. We estimate these metrics for each COUP source from three different classes. We conclude that our proposal provides a striking amount of information on the nature of the photon emitting sources. Further, these variables have the ability to identify X-ray sources wrongly catalogued before. As an appealing conclusion, we show that some sources, previously classified as extragalactic emissions, have a much higher probability of being young stars in Orion Nebula.Comment: 29 page

    The structures of Hausdorff metric in non-Archimedean spaces

    Full text link
    For non-Archimedean spaces X X and Y, Y, let M(X),M(VW) \mathcal{M}_{\flat } (X), \mathfrak{M}(V \rightarrow W) and D(X,Y) \mathfrak{D}_{\flat }(X, Y) be the ballean of X X (the family of the balls in X X ), the space of mappings from X X to Y, Y, and the space of mappings from the ballen of X X to Y, Y, respectively. By studying explicitly the Hausdorff metric structures related to these spaces, we construct several families of new metric structures (e.g., ρ^u,β^X,Yλ,β^X,Yλ \widehat{\rho } _{u}, \widehat{\beta }_{X, Y}^{\lambda }, \widehat{\beta }_{X, Y}^{\ast \lambda } ) on the corresponding spaces, and study their convergence, structural relation, law of variation in the variable λ, \lambda, including some normed algebra structure. To some extent, the class β^X,Yλ \widehat{\beta }_{X, Y}^{\lambda } is a counterpart of the usual Levy-Prohorov metric in the probability measure spaces, but it behaves very differently, and is interesting in itself. Moreover, when X X is compact and Y=K Y = K is a complete non-Archimedean field, we construct and study a Dudly type metric of the space of K K-valued measures on X. X. Comment: 43 pages; this is the final version. Thanks to the anonymous referee's helpful comments, the original Theorem 2.10 is removed, Proposition 2.10 is stated now in a stronger form, the abstact is rewritten, the Monna-Springer is used in Section 5, and Theorem 5.2 is written in a more general for

    Goodness-of-Fit Tests for Symmetric Stable Distributions -- Empirical Characteristic Function Approach

    Full text link
    We consider goodness-of-fit tests of symmetric stable distributions based on weighted integrals of the squared distance between the empirical characteristic function of the standardized data and the characteristic function of the standard symmetric stable distribution with the characteristic exponent α\alpha estimated from the data. We treat α\alpha as an unknown parameter, but for theoretical simplicity we also consider the case that α\alpha is fixed. For estimation of parameters and the standardization of data we use maximum likelihood estimator (MLE) and an equivariant integrated squared error estimator (EISE) which minimizes the weighted integral. We derive the asymptotic covariance function of the characteristic function process with parameters estimated by MLE and EISE. For the case of MLE, the eigenvalues of the covariance function are numerically evaluated and asymptotic distribution of the test statistic is obtained using complex integration. Simulation studies show that the asymptotic distribution of the test statistics is very accurate. We also present a formula of the asymptotic covariance function of the characteristic function process with parameters estimated by an efficient estimator for general distributions

    Brownian markets

    Full text link
    Financial market dynamics is rigorously studied via the exact generalized Langevin equation. Assuming market Brownian self-similarity, the market return rate memory and autocorrelation functions are derived, which exhibit an oscillatory-decaying behavior with a long-time tail, similar to empirical observations. Individual stocks are also described via the generalized Langevin equation. They are classified by their relation to the market memory as heavy, neutral and light stocks, possessing different kinds of autocorrelation functions

    Kinetic models with randomly perturbed binary collisions

    Full text link
    We introduce a class of Kac-like kinetic equations on the real line, with general random collisional rules, which include as particular cases models for wealth redistribution in an agent-based market or models for granular gases with a background heat bath. Conditions on these collisional rules which guarantee both the existence and uniqueness of equilibrium profiles and their main properties are found. We show that the characterization of these stationary solutions is of independent interest, since the same profiles are shown to be solutions of different evolution problems, both in the econophysics context and in the kinetic theory of rarefied gases

    Probabilistic study of the speed of approach to equilibrium for an inelastic Kac model

    Full text link
    This paper deals with a one--dimensional model for granular materials, which boils down to an inelastic version of the Kac kinetic equation, with inelasticity parameter p>0p>0. In particular, the paper provides bounds for certain distances -- such as specific weighted χ\chi--distances and the Kolmogorov distance -- between the solution of that equation and the limit. It is assumed that the even part of the initial datum (which determines the asymptotic properties of the solution) belongs to the domain of normal attraction of a symmetric stable distribution with characteristic exponent \a=2/(1+p). With such initial data, it turns out that the limit exists and is just the aforementioned stable distribution. A necessary condition for the relaxation to equilibrium is also proved. Some bounds are obtained without introducing any extra--condition. Sharper bounds, of an exponential type, are exhibited in the presence of additional assumptions concerning either the behaviour, near to the origin, of the initial characteristic function, or the behaviour, at infinity, of the initial probability distribution function
    corecore