1,255 research outputs found
Magnetic Properties of Undoped
The Heisenberg antiferromagnet, which arises from the large Hubbard
model, is investigated on the molecule and other fullerenes. The
connectivity of leads to an exotic classical ground state with
nontrivial topology. We argue that there is no phase transition in the Hubbard
model as a function of , and thus the large solution is relevant for
the physical case of intermediate coupling. The system undergoes a first order
metamagnetic phase transition. We also consider the S=1/2 case using
perturbation theory. Experimental tests are suggested.Comment: 12 pages, 3 figures (included
Synchronization time in a hyperbolic dynamical system with long-range interactions
We show that the threshold of complete synchronization in a lattice of
coupled non-smooth chaotic maps is determined by linear stability along the
directions transversal to the synchronization subspace. We examine carefully
the sychronization time and show that a inadequate observation of the system
evolution leads to wrong results. We present both careful numerical experiments
and a rigorous mathematical explanation confirming this fact, allowing for a
generalization involving hyperbolic coupled map lattices.Comment: 22 pages (preprint format), 4 figures - accepted for publication in
Physica A (June 28, 2010
Slow Switching in Globally Coupled Oscillators: Robustness and Occurrence through Delayed Coupling
The phenomenon of slow switching in populations of globally coupled
oscillators is discussed. This characteristic collective dynamics, which was
first discovered in a particular class of the phase oscillator model, is a
result of the formation of a heteroclinic loop connecting a pair of clustered
states of the population. We argue that the same behavior can arise in a wider
class of oscillator models with the amplitude degree of freedom. We also argue
how such heteroclinic loops arise inevitably and persist robustly in a
homogeneous population of globally coupled oscillators. Although the
heteroclinic loop might seem to arise only exceptionally, we find that it
appears rather easily by introducing the time-delay in the population which
would otherwise exhibit perfect phase synchrony. We argue that the appearance
of the heteroclinic loop induced by the delayed coupling is then characterized
by transcritical and saddle-node bifurcations. Slow switching arises when the
system with a heteroclinic loop is weakly perturbed. This will be demonstrated
with a vector model by applying weak noises. Other types of weak
symmetry-breaking perturbations can also cause slow switching.Comment: 10 pages, 14 figures, RevTex, twocolumn, to appear in Phys. Rev.
Effect of randomness and anisotropy on Turing patterns in reaction-diffusion systems
We study the effect of randomness and anisotropy on Turing patterns in
reaction-diffusion systems. For this purpose, the Gierer-Meinhardt model of
pattern formation is considered. The cases we study are: (i)randomness in the
underlying lattice structure, (ii)the case in which there is a probablity p
that at a lattice site both reaction and diffusion occur, otherwise there is
only diffusion and lastly, the effect of (iii) anisotropic and (iv) random
diffusion coefficients on the formation of Turing patterns. The general
conclusion is that the Turing mechanism of pattern formation is fairly robust
in the presence of randomness and anisotropy.Comment: 11 pages LaTeX, 14 postscript figures, accepted in Phys. Rev.
Expression of Regulatory Platelet MicroRNAs in Patients with Sickle Cell Disease
Background: Increased platelet activation in sickle cell disease (SCD) contributes to a state of hypercoagulability and confers a risk of thromboembolic complications. The role for post-transcriptional regulation of the platelet transcriptome by microRNAs (miRNAs) in SCD has not been previously explored. This is the first study to determine whether platelets from SCD exhibit an altered miRNA expression profile. Methods and Findings: We analyzed the expression of miRNAs isolated from platelets from a primary cohort (SCD = 19, controls = 10) and a validation cohort (SCD = 7, controls = 7) by hybridizing to the Agilent miRNA microarrays. A dramatic difference in miRNA expression profiles between patients and controls was noted in both cohorts separately. A total of 40 differentially expressed platelet miRNAs were identified as common in both cohorts (p-value 0.05, fold change>2) with 24 miRNAs downregulated. Interestingly, 14 of the 24 downregulated miRNAs were members of three families - miR-329, miR-376 and miR-154 - which localized to the epigenetically regulated, maternally imprinted chromosome 14q32 region. We validated the downregulated miRNAs, miR-376a and miR-409-3p, and an upregulated miR-1225-3p using qRT-PCR. Over-expression of the miR-1225-3p in the Meg01 cells was followed by mRNA expression profiling to identify mRNA targets. This resulted in significant transcriptional repression of 1605 transcripts. A combinatorial approach using Meg01 mRNA expression profiles following miR-1225-3p overexpression, a computational prediction analysis of miRNA target sequences and a previously published set of differentially expressed platelet transcripts from SCD patients, identified three novel platelet mRNA targets: PBXIP1, PLAGL2 and PHF20L1. Conclusions: We have identified significant differences in functionally active platelet miRNAs in patients with SCD as compared to controls. These data provide an important inventory of differentially expressed miRNAs in SCD patients and an experimental framework for future studies of miRNAs as regulators of biological pathways in platelets. © 2013 Jain et al
Balancing Minimum Spanning and Shortest Path Trees
This paper give a simple linear-time algorithm that, given a weighted
digraph, finds a spanning tree that simultaneously approximates a shortest-path
tree and a minimum spanning tree. The algorithm provides a continuous
trade-off: given the two trees and epsilon > 0, the algorithm returns a
spanning tree in which the distance between any vertex and the root of the
shortest-path tree is at most 1+epsilon times the shortest-path distance, and
yet the total weight of the tree is at most 1+2/epsilon times the weight of a
minimum spanning tree. This is the best tradeoff possible. The paper also
describes a fast parallel implementation.Comment: conference version: ACM-SIAM Symposium on Discrete Algorithms (1993
A Halomethane thermochemical network from iPEPICO experiments and quantum chemical calculations
Internal energy selected halomethane cations CH3Cl+, CH2Cl2+, CHCl3+, CH3F+, CH2F2+, CHClF2+ and CBrClF2+ were prepared by vacuum ultraviolet photoionization, and their lowest energy dissociation channel studied using imaging photoelectron photoion coincidence spectroscopy (iPEPICO). This channel involves hydrogen atom loss for CH3F+, CH2F2+ and CH3Cl+, chlorine atom loss for CH2Cl2+, CHCl3+ and CHClF2+, and bromine atom loss for CBrClF2+. Accurate 0 K appearance energies, in conjunction with ab initio isodesmic and halogen exchange reaction energies, establish a thermochemical network, which is optimized to update and confirm the enthalpies of formation of the sample molecules and their dissociative photoionization products. The ground electronic states of CHCl3+, CHClF2+ and CBrClF2+ do not confirm to the deep well assumption, and the experimental breakdown curve deviates from the deep well model at low energies. Breakdown curve analysis of such shallow well systems supplies a satisfactorily succinct route to the adiabatic ionization energy of the parent molecule, particularly if the threshold photoelectron spectrum is not resolved and a purely computational route is unfeasible. The ionization energies have been found to be 11.47 ± 0.01 eV, 12.30 ± 0.02 eV and 11.23 ± 0.03 eV for CHCl3, CHClF2 and CBrClF2, respectively. The updated 0 K enthalpies of formation, ∆fHo0K(g) for the ions CH2F+, CHF2+, CHCl2+, CCl3+, CCl2F+ and CClF2+ have been derived to be 844.4 ± 2.1, 601.6 ± 2.7, 890.3 ± 2.2, 849.8 ± 3.2, 701.2 ± 3.3 and 552.2 ± 3.4 kJ mol–1, respectively. The ∆fHo0K(g) values for the neutrals CCl4, CBrClF2, CClF3, CCl2F2 and CCl3F and have been determined to be –94.0 ± 3.2, –446.6 ± 2.7, –702.1 ± 3.5, –487.8 ± 3.4 and –285.2 ± 3.2 kJ mol–1, respectively
Correlation effects in MgO and CaO: Cohesive energies and lattice constants
A recently proposed computational scheme based on local increments has been
applied to the calculation of correlation contributions to the cohesive energy
of the CaO crystal. Using ab-initio quantum chemical methods for evaluating
individual increments, we obtain 80% of the difference between the experimental
and Hartree-Fock cohesive energies. Lattice constants corrected for correlation
effects deviate by less than 1% from experimental values, in the case of MgO
and CaO.Comment: LaTeX, 4 figure
- …
