5 research outputs found

    'Andhi', the convective duststorm of northwest India

    No full text
    The convective duststorm occurring over Northwest India during the pre-monsoon season is called 'India'. In this paper a study is made on Andhi of Delhi using available meteorological records of recent years. From records of horizontal visibility and surface wind speed variations associated with them, Andhi has been classified into 4 types. Radar PPI photographs studied shows that the distance between the cumulonimbus cloud or squall line as seen in the radar and the ground level position of the duststorm (or gust-front) can be as large as 30 kilometres. The paper also gives a review of the existing knowledge on the phenomenon of convective duststorm (Andhi and Haboob).</jats:p

    Narcolepsy risk loci outline role of T cell autoimmunity and infectious triggers in narcolepsy

    No full text
    Narcolepsy has genetic and environmental risk factors, but the specific genetic risk loci and interaction with environmental triggers are not well understood. Here, the authors identify genetic loci for narcolepsy, suggesting infection as a trigger and dendritic and helper T cell involvement. Narcolepsy type 1 (NT1) is caused by a loss of hypocretin/orexin transmission. Risk factors include pandemic 2009 H1N1 influenza A infection and immunization with Pandemrix (R). Here, we dissect disease mechanisms and interactions with environmental triggers in a multi-ethnic sample of 6,073 cases and 84,856 controls. We fine-mapped GWAS signals within HLA (DQ0602, DQB1*03:01 and DPB1*04:02) and discovered seven novel associations (CD207, NAB1, IKZF4-ERBB3, CTSC, DENND1B, SIRPG, PRF1). Significant signals at TRA and DQB1*06:02 loci were found in 245 vaccination-related cases, who also shared polygenic risk. T cell receptor associations in NT1 modulated TRAJ*24, TRAJ*28 and TRBV*4-2 chain-usage. Partitioned heritability and immune cell enrichment analyses found genetic signals to be driven by dendritic and helper T cells. Lastly comorbidity analysis using data from FinnGen, suggests shared effects between NT1 and other autoimmune diseases. NT1 genetic variants shape autoimmunity and response to environmental triggers, including influenza A infection and immunization with Pandemrix (R)

    Integration of questionnaire-based risk factors improves polygenic risk scores for human coronary heart disease and type 2 diabetes

    No full text
    AbstractLarge-scale biobank initiatives and commercial repositories store genomic data collected from millions of individuals, and tools to leverage the rapidly growing pool of health and genomic data in disease prevention are needed. Here, we describe the derivation and validation of genomics-enhanced risk tools for two common cardiometabolic diseases, coronary heart disease and type 2 diabetes. Data used for our analyses include the FinnGen study (N = 309,154) and the UK Biobank project (N = 343,672). The risk tools integrate contemporary genome-wide polygenic risk scores with simple questionnaire-based risk factors, including demographic, lifestyle, medication, and comorbidity data, enabling risk calculation across resources where genome data is available. Compared to routinely used clinical risk scores for coronary heart disease and type 2 diabetes prevention, the risk tools show at least equivalent risk discrimination, improved risk reclassification (overall net reclassification improvements ranging from 3.7 [95% CI 2.8–4.6] up to 6.2 [4.6–7.8]), and capacity to be improved even further with standard lipid and blood pressure measurements. Without the need for blood tests or evaluation by a health professional, the risk tools provide a powerful yet simple method for preliminary cardiometabolic risk assessment for individuals with genome data available.</jats:p
    corecore