1,176 research outputs found
The Influence of Gas-to-Liquids and Natural Gas Production Technology Penetration on the Crude Oil-Natural Gas Price Relationship
The paper examines conditions under which gas-to-liquids (GTL) technology penetration shifts the crude oil-natural gas price ratio. Technologies that enable direct substitution across fuels, as GTL does, may constrain the price ratio within certain bounds. We analyze the forecasted evolution of the crude oil-natural gas price ratio over the next several decades under alternative assumptions about the availability and cost of GTL and its natural gas feedstock. We do this using a computable general equilibrium model of the global economy with a focus on the refinery sector in the U.S. Absent GTL, a base case forecast of global economic growth over the next few decades produces dramatic increases in the oil-natural gas price ratio. This is because there is a more limited supply of low-cost crude oil resources than natural gas resources. The availability of GTL at conventional forecasts of cost and efficiency does not materially change the picture because it is too expensive to enhance direct competition between the two as fuels in the transportation sector. GTL only modulates the increasing oil-gas price ratio if both (i) natural gas is much cheaper to produce, and (ii) GTL is less costly and more efficient than conventional forecasts.This work has been funded in part by BP, the MITEI ENI Energy Fellowship, the MITEI Martin Family Fellowship, and sponsors of MIT’s Joint Program on the Science and Policy of Global Change. The Joint Program on the Science and Policy of Global Change is funded by the U.S. Department of Energy, Office of Science under grants DE-FG02-94ER61937, DE-FG02- 08ER64597, DE-FG02-93ER61677, DE-SC0003906, DE-SC0007114, XEU-0-9920-01; the U.S. Department of Energy, Oak Ridge National Laboratory under Subcontract 4000109855; the U.S. Environmental Protection Agency under grants XA-83240101, PI-83412601-0, RD-83427901-0, XA-83505101-0, XA-83600001-1, and subcontract UTA12-000624; the U.S. National Science Foundation under grants AGS-0944121, EFRI-0835414, IIS-1028163, ECCS-1128147, ARC-1203526, EF-1137306, AGS-1216707, and SES-0825915; the U.S. National Aeronautics and Space Administration (NASA) under grants NNX06AC30A, NNX07AI49G, NNX11AN72G and Sub Agreement No. 08-SFWS-209365.MIT; the U.S. Federal Aviation Administration under grants 06-C-NE-MIT, 09-C-NE-MIT, Agmt. No. 4103-30368; the U.S. Department of Transportation under grant DTRT57-10-C-10015; the Electric Power Research Institute under grant EP-P32616/C15124, EP-P8154/C4106; the U.S. Department of Agriculture under grant 58-6000-2-0099, 58-0111-9-001; and a consortium of 35 industrial and foundation sponsors (for the complete list see: http://globalchange.mit.edu/sponsors/all)
Quartz Cherenkov Counters for Fast Timing: QUARTIC
We have developed particle detectors based on fused silica (quartz) Cherenkov
radiators read out with micro-channel plate photomultipliers (MCP-PMTs) or
silicon photomultipliers (SiPMs) for high precision timing (Sigma(t) about
10-15 ps). One application is to measure the times of small angle protons from
exclusive reactions, e.g. p + p - p + H + p, at the Large Hadron Collider, LHC.
They may also be used to measure directional particle fluxes close to external
or stored beams. The detectors have small areas (square cm), but need to be
active very close (a few mm) to the intense LHC beam, and so must be radiation
hard and nearly edgeless. We present results of tests of detectors with quartz
bars inclined at the Cherenkov angle, and with bars in the form of an "L" (with
a 90 degree corner). We also describe a possible design for a fast timing
hodoscope with elements of a few square mm.Comment: 24 pages, 14 figure
New Fast Shower Max Detector Based on MCP as an Active Element
One possibility to make a fast and radiation resistant shower maximum (SM) detector is to use a secondary emitter as an active element. We present below test beam results, obtained with different types of photo detectors based on micro channel plates (MCP) as secondary emitter. The SM time resolution – we obtained for this new type of detector is at the level of 20-30 ps. We estimate that a significant contribution to the detector response originates from secondary emission of the MCP
Precision Timing with Silicon Sensors for Use in Calorimetry
The high luminosity upgrade of the Large Hadron Collider (HL-LHC) at CERN is expected to provide instantaneous luminosities of 5 × 10^(34) cm^(−2) s^(−1). The high luminosities expected at the HL-LHC will be accompanied by a factor of 5 to 10 more pileup compared with LHC conditions in 2015, causing general confusion for particle identification and event reconstruction. Precision timing allows to extend calorimetric measurements into such a high density environment by subtracting the energy deposits from pileup interactions. Calorimeters employing silicon as the active component have recently become a popular choice for the HL- LHC and future collider experiments which face very high radiation environments. We present studies of basic calorimetric and precision timing measurements using a prototype composed of tungsten absorber and silicon sensor as the active medium. We show that for the bulk of electromagnetic showers induced by electrons in the range of 20 GeV to 30 GeV, we can achieve time resolutions better than 25 ps per single pad sensor
Expression of Interest: The Atmospheric Neutrino Neutron Interaction Experiment (ANNIE)
Submitted for the January 2014 Fermilab Physics Advisory Committee meetingSubmitted for the January 2014 Fermilab Physics Advisory Committee meetingSubmitted for the January 2014 Fermilab Physics Advisory Committee meetingSubmitted for the January 2014 Fermilab Physics Advisory Committee meetingNeutron tagging in Gadolinium-doped water may play a significant role in reducing backgrounds from atmospheric neutrinos in next generation proton-decay searches using megaton-scale Water Cherenkov detectors. Similar techniques might also be useful in the detection of supernova neutrinos. Accurate determination of neutron tagging efficiencies will require a detailed understanding of the number of neutrons produced by neutrino interactions in water as a function of momentum transferred. We propose the Atmospheric Neutrino Neutron Interaction Experiment (ANNIE), designed to measure the neutron yield of atmospheric neutrino interactions in gadolinium-doped water. An innovative aspect of the ANNIE design is the use of precision timing to localize interaction vertices in the small fiducial volume of the detector. We propose to achieve this by using early production of LAPPDs (Large Area Picosecond Photodetectors). This experiment will be a first application of these devices demonstrating their feasibility for Water Cherenkov neutrino detectors
Recommended from our members
To be or not to be an auctioneer: Some thoughts on the legal nature of online eBay auctions and the protection of consumers
This paper discusses the legal classification of online “eBay” auctions. The discussion has key implications on the scope of consumer protection law as sale by auctions are, for example, excluded from the scope of the Consumer Protection (Distance Selling) Regulations 2000. The paper uncovers that online “eBay” auctions cannot always be considered as traditional auctions and that eBay, as an intermediary, is not to be considered as an auctioneer. This creates difficulties associated with a distributive application of consumer protection laws such as the Consumer Protection (Distance Selling) Regulations 2000. Another set of difficulties is associated with a lenient legal regime applicable to the liability of eBay under the Electronic Commerce (EC Directive) Regulations 2002 . The paper concludes that there is an urgent need to clarify the legal classification of online auctions and to rethink the liability of online auction sites to better protect consumers
Moment-Generating Algorithm for Response Time in Processor Sharing Queueing Systems
Response times are arguably the most representative and important metric for measuring the performance of modern computer systems. Further, service level agreements (SLAs), ranging from data centres to smartphone users, demand quick and, equally important, predictable response times. Hence, it is necessary to calculate moments, at least, and ideally response time distributions, which is not straightforward. A new moment-generating algorithm for calculating response times analytically is obtained, based on M/M/1 processor sharing (PS) queueing models. This algorithm is compared against existing work on response times in M/M/1-PS queues and extended to M/M/1 discriminatory PS queues. Two real-world case studies are evaluated
Expression of Interest: The Atmospheric Neutrino Neutron Interaction Experiment (ANNIE)
Neutron tagging in Gadolinium-doped water may play a significant role in
reducing backgrounds from atmospheric neutrinos in next generation proton-decay
searches using megaton-scale Water Cherenkov detectors. Similar techniques
might also be useful in the detection of supernova neutrinos. Accurate
determination of neutron tagging efficiencies will require a detailed
understanding of the number of neutrons produced by neutrino interactions in
water as a function of momentum transferred. We propose the Atmospheric
Neutrino Neutron Interaction Experiment (ANNIE), designed to measure the
neutron yield of atmospheric neutrino interactions in gadolinium-doped water.
An innovative aspect of the ANNIE design is the use of precision timing to
localize interaction vertices in the small fiducial volume of the detector. We
propose to achieve this by using early production of LAPPDs (Large Area
Picosecond Photodetectors). This experiment will be a first application of
these devices demonstrating their feasibility for Water Cherenkov neutrino
detectors.Comment: Submitted for the January 2014 Fermilab Physics Advisory Committee
meetin
- …
