935 research outputs found
Continuous loading of an electrostatic trap for polar molecules
A continuously operated electrostatic trap for polar molecules is
demonstrated. The trap has a volume of ~0.6 cm^3 and holds molecules with a
positive Stark shift. With deuterated ammonia from a quadrupole velocity
filter, a trap density of ~10^8/cm^3 is achieved with an average lifetime of
130 ms and a motional temperature of ~300 mK. The trap offers good starting
conditions for high-precision measurements, and can be used as a first stage in
cooling schemes for molecules and as a "reaction vessel" in cold chemistry.Comment: 4 pages, 3 figures v2: several small improvements, new intr
Trapping of Neutral Rubidium with a Macroscopic Three-Phase Electric Trap
We trap neutral ground-state rubidium atoms in a macroscopic trap based on
purely electric fields. For this, three electrostatic field configurations are
alternated in a periodic manner. The rubidium is precooled in a magneto-optical
trap, transferred into a magnetic trap and then translated into the electric
trap. The electric trap consists of six rod-shaped electrodes in cubic
arrangement, giving ample optical access. Up to 10^5 atoms have been trapped
with an initial temperature of around 20 microkelvin in the three-phase
electric trap. The observations are in good agreement with detailed numerical
simulations.Comment: 4 pages, 4 figure
A study on burning behavior and convective flows in Methanol pool fires bound by ice
Abstract (ID: 2017-170)
An experimental study on methanol pool fires bound by ice was carried to research the burning behavior and flow field (within the liquid-phase) of methanol. The experiments were conducted in two parts: 1- in a cylindrical ice cavity/pan (10.2 cm diameter and 6 cm depth) at three different conditions to analyze burning parameters of methanol, 2- in a square glass tray with outside dimensions of 10 × 10 cm and a depth of 5 cm to obtain flow field of methanol pool with a two-dimensional PIV (Particle Image Velocimetry) system. The results of the experiments of the first part show the cold boundaries of the ice cavity/pan act as a heat sink causing considerable heat losses. Thus, burning rates and burning efficiencies are found to be lower with cold boundaries. However, the burning rate values in ice cavity are found to be the highest because of the melting of the ice and expansion of the cavity. The analysis of the results obtained by the PIV system showed the velocity magnitudes and flow patterns in the liquid-phase of icy methanol fire significantly change over the course of burning. In the instants after ignition a horizontal flow induced by Marangoni near the surface was observed. Later on, mixing of melt-water with methanol and sinking of this mixture caused a cycle in the tray that resulted in a vortex appearing in the middle of the pool. Magnitudes of velocity were also observed to increase after ignition. The increase in the velocity magnitudes is expected to significantly impact the melting and size of the lateral cavity.</jats:p
Theoretical Analysis on Marangoni-driven Cavity Formation in Ice during In-situ Burning of Oil Spills in Ice-infested Waters -Paper Number IN43D-0096
A Three Dimensional Lattice of Ion Traps
We propose an ion trap configuration such that individual traps can be
stacked together in a three dimensional simple cubic arrangement. The isolated
trap as well as the extended array of ion traps are characterized for different
locations in the lattice, illustrating the robustness of the lattice of traps
concept. Ease in the addressing of ions at each lattice site, individually or
simultaneously, makes this system naturally suitable for a number of
experiments. Application of this trap to precision spectroscopy, quantum
information processing and the study of few particle interacting system are
discussed.Comment: 4 pages, 4 Figures. Fig 1 appears as a composite of 1a, 1b, 1c and
1d. Fig 2 appears as a composite of 2a, 2b and 2
Water vapor at a translational temperature of one kelvin
We report the creation of a confined slow beam of heavy-water (D2O) molecules
with a translational temperature around 1 kelvin. This is achieved by filtering
slow D2O from a thermal ensemble with inhomogeneous static electric fields
exploiting the quadratic Stark shift of D2O. All previous demonstrations of
electric field manipulation of cold dipolar molecules rely on a predominantly
linear Stark shift. Further, on the basis of elementary molecular properties
and our filtering technique we argue that our D2O beam contains molecules in
only a few ro-vibrational states.Comment: 4 pages, 4 figures, 1 tabl
- …
