169 research outputs found
Comment on ``Structure of exotic nuclei and superheavy elements in a relativistic shell model''
A recent paper [M. Rashdan, Phys. Rev. C 63, 044303 (2001)] introduces the
new parameterization NL-RA1 of the relativistic mean-field model which is
claimed to give a better description of nuclear properties than earlier ones.
Using this model ^{298}114 is predicted to be a doubly-magic nucleus. As will
be shown in this comment these findings are to be doubted as they are obtained
with an unrealistic parameterization of the pairing interaction and neglecting
ground-state deformation.Comment: 2 pages REVTEX, 3 figures, submitted to comment section of Phys. Rev.
C. shortened and revised versio
Surface Incompressibility from Semiclassical Relativistic Mean Field Calculations
By using the scaling method and the Thomas-Fermi and Extended Thomas-Fermi
approaches to Relativistic Mean Field Theory the surface contribution to the
leptodermous expansion of the finite nuclei incompressibility has been
self-consistently computed. The validity of the simplest expansion, which
contains volume, volume-symmetry, surface and Coulomb terms, is examined by
comparing it with self-consistent results of the finite nuclei
incompressibility for some currently used non-linear sigma-omega parameter
sets. A numerical estimate of higher-order contributions to the leptodermous
expansion, namely the curvature and surface-symmetry terms, is made.Comment: 18 pages, REVTeX, 3 eps figures, changed conten
Nπ raspršenje i elektromagnetske popravke u proširenom linearnom sigma modelu
Recent analysis of pion-nucleon scattering and nucleon magnetic moments are investigated in an extended linear sigma model. The field equations are solved in the mean-field approximation. Good results have been obtained in comparison with previous work and experimental data.Proučavamo nedavne analize raspršenja pion–nukleon i magnetske momente nukleona u proširenom linearnom sigma modelu. Jednadžbe polja riješili smo u približenju srednjeg polja. Postigli smo bolji sklad s eksperimentalnim podacima nego raniji radovi
Nucleon-Nucleon Interaction: A Typical/Concise Review
Nearly a recent century of work is divided to Nucleon-Nucleon (NN)
interaction issue. We review some overall perspectives of NN interaction with a
brief discussion about deuteron, general structure and symmetries of NN
Lagrangian as well as equations of motion and solutions. Meanwhile, the main NN
interaction models, as frameworks to build NN potentials, are reviewed
concisely. We try to include and study almost all well-known potentials in a
similar way, discuss more on various commonly used plain forms for two-nucleon
interaction with an emphasis on the phenomenological and meson-exchange
potentials as well as the constituent-quark potentials and new ones based on
chiral effective field theory and working in coordinate-space mostly. The
potentials are constructed in a way that fit NN scattering data, phase shifts,
and are also compared in this way usually. An extra goal of this study is to
start comparing various potentials forms in a unified manner. So, we also
comment on the advantages and disadvantages of the models and potentials partly
with reference to some relevant works and probable future studies.Comment: 85 pages, 5 figures, than the previous v3 edition, minor changes, and
typos fixe
The effective force NL3 revisited
Covariant density functional theory based on the relativistic mean field
(RMF) Lagrangian with the parameter set NL3 has been used in the last ten years
with great success. Now we propose a modification of this parameter set, which
improves the description of the ground state properties of many nuclei and
simultaneously provides an excellent description of excited states with
collective character in spherical as well as in deformed nuclei.Comment: 8 pages, 5 figure
Development and testing of open-jet wind tunnel for quadrotor flight testing
Station keeping of a hovering quadrotor under various turbulent wind condition has gained much attention these days due to its potential application in complex environments. Various types of control algorithm have been developed to increase the performance of the quadrotor under such wind conditions. These need to be tested and verified by flying the quadrotor itself. One of the quick and low-cost solutions would be to set up a test rig by modifying an existing wind tunnel to recreate such wind conditions. In order to cater such experiments, in Universiti Putra Malaysia (UPM), an open-jet wind tunnel was attached to an existing open-loop wind tunnel, which initially has a test area of 1 meter by 1-meter size. By attaching the open-jet wind tunnel which has a diverged shape, the test section area is increased up to 2 meters in diameter size, ensuring sufficient space for manoeuvring and hovering the experimental quadrotor. A settling chamber is attached before the test section to characterize the output wind. The maximum wind speed at the opening is 8 m/s. The extended wind tunnel's flow characteristics are analyzed by anemometer for velocity distribution in four different distance from the opening. It has been found that the wind velocity distribution and turbulent intensity simulate the outdoor wind turbulent condition to test a quadrotor hovering control algorithm
Development of Ground Truth Data for Automatic Lumbar Spine MRI Image Segmentation
Artificial Intelligence through supervised machine learning remains an attractive and popular research area in medical image processing. The objective of such research is often tied to the development of an intelligent computer aided diagnostic system whose aim is to assist physicians in their task of diagnosing diseases. The quality of the resulting system depends largely on the availability of good data for the machine learning algorithm to train on. Training data of a supervised learning process needs to include ground truth, i.e., data that have been correctly annotated by experts. Due to the complex nature of most medical images, human error, experience, and perception play a strong role in the quality of the ground truth. In this paper, we present the results of annotating lumbar spine Magnetic Resonance Imaging images for automatic image segmentation and propose confidence and consistency metrics to measure the quality and variability of the resulting ground truth data, respectively
- …
