3,877 research outputs found
Measures of Health-Related Quality of Life Outcomes in Pediatric Neurosurgery: Literature Review
Background
Improving value in healthcare means optimizing outcomes and minimizing costs. The emerging pay-for-performance era requires understanding of the effect of healthcare services on health-related quality of life (HRQoL). Pediatric and surgical subspecialties have yet to fully integrate HRQoL measures into practice. The present study reviewed and characterized the HRQoL outcome measures across various pediatric neurosurgical diagnoses.
Methods
A literature review was performed by searching PubMed and Google Scholar with search terms such as “health-related quality of life” and “pediatric neurosurgery” and then including the specific pathologies for which a HRQoL instrument was found (e.g., “health-related quality of life” plus “epilepsy”). Each measurement was evaluated by content and purpose, relative strengths and weaknesses, and validity.
Results
We reviewed 68 reports. Epilepsy, brain tumor, cerebral palsy, spina bifida, hydrocephalus, and scoliosis were diagnoses found in reported studies that had used disease-specific HRQoL instruments. Information using general HRQoL instruments was also reported. Internal, test–retest, and/or interrater reliability varied across the instruments, as did face, content, concurrent, and/or construct validity. Few instruments were tested enough for robust reliability and validity. Significant variability was found in the usage of these instruments in clinical studies within pediatric neurosurgery.
Conclusions
The HRQoL instruments used in pediatric neurosurgery are currently without standardized guidelines and thus exhibit high variability in use. Clinicians should support the development and application of these methods to optimize these instruments, promote standardization of research, improve performance measures to reflect clinically modifiable and meaningful outcomes, and, ultimately, lead the national discussion in healthcare quality and patient-centered care
Testostérone et contrôle central de l’érection
Résumé
La testostérone orchestre l’organisation périnatale et l’activation adulte des structures nerveuses cérébrales et spinales impliquées dans l’expression du comportement sexuel mâle. Cette revue décrit brièvement les différents effets de la testostérone dans la régulation de la motivation sexuelle et de l’érection, et les modèles génétiques générés, jusqu’à présent, dans le but d’élucider ses mécanismes d’action centraux.</jats:p
The Rarita-Schwinger spin-3/2 equation in a nonuniform, central potential
The equations of motion for a massive spin-3/2 Rarita-Schwinger field in a
finite-range, central, Lorentz scalar potential are developed. It is shown that
the resulting density may not be everywhere positive definite.Comment: 9 pages, RevTe
Induced Nucleon Polarization and Meson-Exchange Currents in (e,e'p) Reactions
Nucleon recoil polarization observables in reactions are
investigated using a semi-relativistic distorted-wave model which includes one-
and two-body currents with relativistic corrections. Results for the induced
polarization asymmetry are shown for closed-shell nuclei and a comparison with
available experimental data for C is provided. A careful analysis of
meson exchange currents shows that they may affect significantly the induced
polarization for high missing momentum.Comment: 7 pages, 9 figures. Revised version with small changes, new curve in
Fig. 3. To be published in PR
Analysis of Probabilistic Basic Parallel Processes
Basic Parallel Processes (BPPs) are a well-known subclass of Petri Nets. They
are the simplest common model of concurrent programs that allows unbounded
spawning of processes. In the probabilistic version of BPPs, every process
generates other processes according to a probability distribution. We study the
decidability and complexity of fundamental qualitative problems over
probabilistic BPPs -- in particular reachability with probability 1 of
different classes of target sets (e.g. upward-closed sets). Our results concern
both the Markov-chain model, where processes are scheduled randomly, and the
MDP model, where processes are picked by a scheduler.Comment: This is the technical report for a FoSSaCS'14 pape
Measuring longitudinal amplitudes for electroproduction of pseudoscalar mesons using recoil polarization in parallel kinematics
We propose a new method for measuring longitudinal amplitudes for
electroproduction of pseudoscalar mesons that exploits a symmetry relation for
polarization observables in parallel kinematics. This polarization technique
does not require variation of electron scattering kinematics and avoids the
major sources of systematic errors in Rosenbluth separation.Comment: intended for Phys. Rev. C as a Brief Repor
Low temperature tunneling current enhancement in silicide/Si Schottky contacts with nanoscale barrier width
The low temperature electrical behavior of adjacent silicide/Si Schottky
contacts with or without dopant segregation is investigated. The electrical
characteristics are very well modeled by thermionic-field emission for
non-segregated contacts separated by micrometer-sized gaps. Still, an excess of
current occurs at low temperature for short contact separations or
dopant-segregated contacts when the voltage applied to the device is
sufficiently high. From two-dimensional self-consistent non-equilibrium Green's
function simulations, the dependence of the Schottky barrier profile on the
applied voltage, unaccounted for in usual thermionic-field emission models, is
found to be the source of this deviation
Detection of gravity modes in the massive binary V380 Cyg from Kepler spacebased photometry and high-resolution spectroscopy
We report the discovery of low-amplitude gravity-mode oscillations in the
massive binary star V380 Cyg, from 180 d of Kepler custom-aperture space
photometry and 5 months of high-resolution high signal-to-noise spectroscopy.
The new data are of unprecedented quality and allowed to improve the orbital
and fundamental parameters for this binary. The orbital solution was subtracted
from the photometric data and led to the detection of periodic intrinsic
variability with frequencies of which some are multiples of the orbital
frequency and others are not. Spectral disentangling allowed the detection of
line-profile variability in the primary. With our discovery of intrinsic
variability interpreted as gravity mode oscillations, V380 Cyg becomes an
important laboratory for future seismic tuning of the near-core physics in
massive B-type stars.Comment: 5 pages, 4 figures, 2 tables. Accepted for publication in MNRAS
Letter
- …
