1,307 research outputs found
An Improved Measurement of the Hubble Constant from the Sunyaev-Zeldovich Effect
We present a determination of the Hubble constant from measurements of the
Sunyaev-Zeldovich Effect (SZE) in an orientation-unbiased sample of 7 z < 0.1
galaxy clusters. With improved X-ray models and a more accurate 32-GHz
calibration, we obtain H_O = 64+14-11 +/- 14_sys km/s/Mpc. for a standard CDM
cosmology, or 66+14-11 +/- 15_sys km/s/Mpc for a flat LambdaCDM cosmology. In
combination with X-ray cluster measurements and the BBN value for Omega_B, we
find Omega_M = 0.32 +/- 0.05.Comment: 5 pp., Accepted for publication in ApJ
A Comparison of the Determination of Closure Phase in Optical Interferometry with Fully Filled Apertures and Non-Redundant Aperture Masks
A Myelin Proteolipid Protein-LacZ Fusion Protein Is Developmentally Regulated and Targeted to the Myelin Membrane in Transgenic Mice
Transgenic mice were generated with a fusion gene carrying a portion of the murine myelin proteolipid protein (PLP) gene, including the first intron, fused to the E. coli LacZ gene. Three transgenic lines were derived and all lines expressed the transgene in central nervous system white matter as measured by a histochemical assay for the detection of β-galactosidase activity. PLP-LacZ transgene expression was regulated in both a spatial and temporal manner, consistent with endogenous PLP expression. Moreover, the transgene was expressed specifically in oligodendrocytes from primary mixed glial cultures prepared from transgenic mouse brains and appeared to be developmentally regulated in vitro as well. Transgene expression occurred in embryos, presumably in pre- or nonmyelinating cells, rather extensively throughout the peripheral nervous system and within very discrete regions of the central nervous system. Surprisingly, beta-galactosidase activity was localized predominantly in the myelin in these transgenic animals, suggesting that the NH_2-terminal 13 amino acids of PLP, which were present in the PLP-LacZ gene product, were sufficient to target the protein to the myelin membrane. Thus, the first half of the PLP gene contains sequences sufficient to direct both spatial and temporal gene regulation and to encode amino acids important in targeting the protein to the myelin membrane
Collimation of extragalactic radio jets in compact steep spectrum and larger sources
We study the collimation of radio jets in the high-luminosity Fanaroff-Riley
class II sources by examining the dependence of the sizes of hotspots and knots
in the radio jets on the overall size of the objects for a sample of compact
steep-spectrum or CSS and larger-sized objects. The objects span a wide range
in overall size from about 50 pc to nearly 1 Mpc. The mean size of the hotspots
increases with the source size during the CSS phase, which is typically taken
to be about 20 kpc, and the relationship flattens for the larger sources. The
sizes of the knots in the compact as well as the larger sources are consistent
with this trend. We discuss possible implications of these trends. We find that
the hotspot closer to the nucleus or core component tends to be more compact
for the most asymmetric objects where the ratio of separations of the hotspots
from the nucleus, r_d > 2. These highly asymmetric sources are invariably CSS
objects, and their location in the hotspot size ratio - separation ratio
diagram is possibly due to their evolution in an asymmetric environment. We
also suggest that some soures, especially of lower luminosity, exhibit an
asymmetry in the collimation of the oppositely-directed radio jets.Comment: MNRAS in press, 9 pages and 3 figures, MNRAS LaTe
Coherent Receiver Arrays for Astronomy and Remote Sensing
Monolithic Millimeter-wave Integrated Circuits (MMICs) provide a level of integration that makes possible
the construction of large focal plane arrays of radio-frequency detectors—effectively the first “Radio
Cameras”—and these will revolutionize radio-frequency observations with single dishes, interferometers,
spectrometers, and spacecraft over the next two decades. The key technological advances have been
made at the Jet Propulsion Laboratory (JPL) in collaboration with the Northrop Grumman Corporation
(NGC). Although dramatic progress has been made in the last decade in several important areas, including
(i) packaging that enables large coherent detector arrays, (ii) extending the performance of amplifiers
to much higher frequencies, and (iii) reducing room-temperature noise at high frequencies, funding to
develop MMIC performance at cryo-temperatures and at frequencies below 150GHz has dropped nearly
to zero over the last five years. This has severely hampered the advance of the field. Moreover, because
of the high visibility of < 150GHz cryogenic detectors in astrophysics and cosmology, lack of progress in
this area has probably had a disproportionate impact on perceptions of the potential of coherent detectors
in general.
One of the prime objectives of the Keck Institute for Space Studies (KISS) is to select crucial areas of
technological development in their embryonic stages, when relatively modest funding can have a highly
significant impact by catalyzing collaborations between key institutions world-wide, supporting in-depth
studies of the current state and potential of emerging technologies, and prototyping development of key
components—all potentially leading to strong agency follow-on funding.
The KISS large program “Coherent Instrumentation for Cosmic Microwave Background Observations”
was initiated in order to investigate the scientific potential and technical feasibility of these “Radio
Cameras.” This opens up the possibility of bringing support to this embryonic area of detector development
at a critical phase during which KISS can catalyze and launch a coherent, coordinated, worldwide
effort on the development of MMIC Arrays. A number of key questions, regarding (i) the importance and
breadth of the scientific drivers, (ii) realistic limits on sensitivity, (iii) the potential of miniaturization into
receiver “modules,” and (iv) digital signal processing, needed to be studied carefully before embarking on
a major MMIC Array development effort led by Caltech/JPL/NGC and supported by KISS, in the hope
of attracting adequate subsequent government funding. For this purpose a large study was undertaken
under the sponsorship and aegis of KISS. The study began with a workshop in Pasadena on “MMIC
Array Receivers and Spectrographs” (July 21–25, 2008)1, immediately after an international conference
“CMB Component Separation and the Physics of Foregrounds” (July 14–18, 2008)2 that was organized in
conjunction with the MMIC workshop. There was then an eight-month study period, culminating in a
final “MMIC 2Workshop” (March 23–27, 2009).3 These workshops were very well attended, and brought
together the major international groups and scientists in the field of coherent radio-frequency detector
arrays. A notable aspect of the workshops is that they were well attended by young scientists—there
are many graduate students and post-doctoral fellows coming into this area. The two workshops focused
both on detailed discussions of key areas of interest and on the writing of this report. They were
conducted in a spirit of full and impartial scrutiny of the pros and cons of MMICs, in order to make an
objective assessment of their potential. It serves no useful purpose to pursue lines of technology development
based on unrealistic and over-optimistic projections. This is crucially important for KISS, Caltech,
and JPL which can only have real impact if they deliver on the promise of the technologies they develop.
A broad range of opinions was evident at the start of the first workshop, but in the end a strong consensus
was achieved on the most important questions that had emerged. This report reflects the workshop
deliberations and that consensus.
The key scientific drivers for the development of the MMIC technology are: (i) large angular-scale Bmode
polarization observations of the cosmic microwave background—here MMICs are one of two key
technologies under development at JPL, both of which are primary detectors on the recently-launched
Planck mission; (ii) large-field spectroscopic surveys of the Galaxy and nearby galaxies at high spectral
resolution, and of galaxy clusters at low resolution; (iii) wide-field imaging via deployment as focal plane
arrays on interferometers; (iv) remote sensing of the atmosphere and Earth; and (v) wide-field imaging in
planetary missions. These science drivers are discussed in the report.
The most important single outcome of the workshops, and a sine qua non of this whole program,
is that consensus was reached that it should be possible to reduce the noise of individual HEMTs or
MMICs operating at cryogenic temperatures to less than three times the quantum limit at frequencies up
to 150 GHz, by working closely with a foundry (in this case NGC) and providing rapid feedback on the
performance of the devices they are fabricating, thus enabling tests of the effects of small changes in the
design of these transistors. This kind of partnership has been very successful in the past, but can now be
focused more intensively on cryogenic performance by carrying out tests of MMIC wafers, including tests
on a cryogenic probe station. It was felt that a properly outfitted university laboratory dedicated to this
testing and optimization would be an important element in this program, which would include MMIC
designs, wafer runs, and a wide variety of tests of MMIC performance at cryogenic temperatures.
This Study identified eight primary areas of technology development, including the one singled out
above, which must be actively pursued in order to exploit the full potential of MMIC Arrays in a timely
fashion:
1. Reduce the noise levels of individual transistors and MMICs to three times the quantum limit or
lower at cryogenic temperatures at frequencies up to 150 GHz.
2. Integrate high-performing MMICs into the building blocks of large arrays without loss of performance.
Currently factors of two in both noise and bandwidth are lost at this step.
3. Develop high performance, low mass, inexpensive feed arrays.
4. Develop robust interconnects and wiring that allow easy fabrication and integration of large arrays.
5. Develop mass production techniques suitable for arrays of differing sizes.
6. Reduce mass and power. (Requirements will differ widely with application. In the realm of planetary
instruments, this is often the most important single requirement.)
7. Develop planar orthomode transducers with low crosstalk and broad bandwidth.
8. Develop high power and high efficiency MMIC amplifiers for LO chains, etc.
Another important outcome of the two workshops was that a number of new collaborations were
forged between leading groups worldwide with the object of focusing on the development of MMIC
arrays
The broad-band properties of the intermediate synchrotron peaked BL Lac S2 0109+22 from radio to VHE gamma-rays
The Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) telescopes observed S2 0109+22 in 2015 July during its flaring activity in high-energy gamma-rays observed by Fermi-Large Area Telescope. We analyse the MAGIC data to characterize the very high energy (VHE) gamma-ray emission of S2 0109+22, which belongs to the subclass of intermediate synchrotron peak (ISP) BL Lacertae (BL Lac) objects. We study the multifrequency emission in order to investigate the source classification. Finally, we compare the source long-term behaviour to other VHE gamma-ray emitting (TeV) blazars. We performed a temporal and spectral analysis of the data centred around the MAGIC interval of observation (MJD 57225–57231). Long-term radio and optical data have also been investigated using the discrete correlation function. The redshift of the source is estimated through optical host-galaxy imaging and also using the amount of VHE gamma-ray absorption. The quasi-simultaneous multifrequency spectral energy distribution (SED) is modelled with the conventional one-zone synchrotron self-Compton (SSC) model. MAGIC observations resulted in the detection of the source at a significance level of 5.3σ. The VHE gamma-ray emission of S2 0109+22 is variable on a daily time scale. VHE gamma-ray luminosity of the source is lower than the average of TeV BL Lacs. The optical polarization and long-term optical/radio behaviour of the source are different from the general population of TeV blazars. All these findings agree with the classification of the source as an ISP BL Lac object. We estimate the source redshift as z = 0.36 ± 0.07. The SSC parameters describing the SED are rather typical for blazars
Simultaneous Radio to (Sub-) mm-Monitoring of Variability and Spectral Shape Evolution of potential GLAST Blazars
The Large Area Telescope (LAT) instrument onboard GLAST offers a tremendous
opportunity for future blazar studies. In order to fully benefit from its
capabilities and to maximize the scientific return from the LAT, it is of great
importance to conduct dedicated multi-frequency monitoring campaigns that will
result comprehensive observations. Consequently, we initiated an effort to
conduct a GLAST-dedicated, quasi-simultaneous, broad-band flux-density (and
polarization) monitoring of potential GLAST blazars with the Effelsberg and
OVRO radio telescopes (11cm to 7mm wavelength). Here, we present a short
overview of these activities which will complement the multi-wavelengths
activities of the GLAST/LAT collaboration towards the 'low-energy' radio bands.
Further we will give a brief outlook including the extension of this
coordinated campaign towards higher frequencies and future scientific aims.Comment: 3 pages, to appear in the Proceedings of the First GLAST Symposium,
Stanford University, February 200
A New Component in the Radio Continua of PNe
A byproduct of experiments designed to map the CMB is the recent detection of a new component of foreground galactic emission. The anomalous foreground at 10–30 GHz, unexplained by traditional emission mechanisms, correlates with 100 mum dust emission, and is thus presumably due to dust.Is the anomalous foreground ubiquitous in the Galaxy? I will present evidence obtained with the CBI and SIMBA+SEST supporting the existence of the new component in the ISM at large, and in specific objects, in the form of a 31 GHz excess over free-free emission in PNe
- …
