246 research outputs found

    Whole blood methylome-derived features to discriminate endocrine hypertension

    Full text link
    BACKGROUND Arterial hypertension represents a worldwide health burden and a major risk factor for cardiovascular morbidity and mortality. Hypertension can be primary (primary hypertension, PHT), or secondary to endocrine disorders (endocrine hypertension, EHT), such as Cushing's syndrome (CS), primary aldosteronism (PA), and pheochromocytoma/paraganglioma (PPGL). Diagnosis of EHT is currently based on hormone assays. Efficient detection remains challenging, but is crucial to properly orientate patients for diagnostic confirmation and specific treatment. More accurate biomarkers would help in the diagnostic pathway. We hypothesized that each type of endocrine hypertension could be associated with a specific blood DNA methylation signature, which could be used for disease discrimination. To identify such markers, we aimed at exploring the methylome profiles in a cohort of 255 patients with hypertension, either PHT (n = 42) or EHT (n = 213), and at identifying specific discriminating signatures using machine learning approaches. RESULTS Unsupervised classification of samples showed discrimination of PHT from EHT. CS patients clustered separately from all other patients, whereas PA and PPGL showed an overall overlap. Global methylation was decreased in the CS group compared to PHT. Supervised comparison with PHT identified differentially methylated CpG sites for each type of endocrine hypertension, showing a diffuse genomic location. Among the most differentially methylated genes, FKBP5 was identified in the CS group. Using four different machine learning methods-Lasso (Least Absolute Shrinkage and Selection Operator), Logistic Regression, Random Forest, and Support Vector Machine-predictive models for each type of endocrine hypertension were built on training cohorts (80% of samples for each hypertension type) and estimated on validation cohorts (20% of samples for each hypertension type). Balanced accuracies ranged from 0.55 to 0.74 for predicting EHT, 0.85 to 0.95 for predicting CS, 0.66 to 0.88 for predicting PA, and 0.70 to 0.83 for predicting PPGL. CONCLUSIONS The blood DNA methylome can discriminate endocrine hypertension, with methylation signatures for each type of endocrine disorder

    Predicting Hypertension Subtypes with Machine Learning Using Targeted Metabolites and Their Ratios

    Full text link
    Hypertension is a major global health problem with high prevalence and complex associated health risks. Primary hypertension (PHT) is most common and the reasons behind primary hypertension are largely unknown. Endocrine hypertension (EHT) is another complex form of hypertension with an estimated prevalence varying from 3 to 20% depending on the population studied. It occurs due to underlying conditions associated with hormonal excess mainly related to adrenal tumours and sub-categorised: primary aldosteronism (PA), Cushing's syndrome (CS), pheochromocytoma or functional paraganglioma (PPGL). Endocrine hypertension is often misdiagnosed as primary hypertension, causing delays in treatment for the underlying condition, reduced quality of life, and costly antihypertensive treatment that is often ineffective. This study systematically used targeted metabolomics and high-throughput machine learning methods to predict the key biomarkers in classifying and distinguishing the various subtypes of endocrine and primary hypertension. The trained models successfully classified CS from PHT and EHT from PHT with 92% specificity on the test set. The most prominent targeted metabolites and metabolite ratios for hypertension identification for different disease comparisons were C18:1, C18:2, and Orn/Arg. Sex was identified as an important feature in CS vs. PHT classification

    Disocclusion Hole-Filling in DIBR-Synthesized Images using Multi-Scale Template Matching

    Get PDF
    Transmitting texture and depth images of captured camera view(s) of a 3D scene enables a receiver to synthesize novel virtual viewpoint images via Depth-Image-Based Rendering (DIBR). However, a DIBR-synthesized image often contains disocclusion holes, which are spatial regions in the virtual view image that were occluded by foreground objects in the captured camera view(s). In this paper, we propose to complete these disocclusion holes by exploiting the self-similarity characteristic of natural images via nonlocal template-matching (TM). Specifically, we first define self-similarity as nonlocal recurrences of pixel patches within the same image across different scales--one characterization of self-similarity in a given image is the scale range in which these patch recurrences take place. Then, at encoder we segment an image into multiple depth layers using available per-pixel depth values, and characterize self-similarity in each layer with a scale range; scale ranges for all layers are transmitted as side information to the decoder. At decoder, disocclusion holes are completed via TM on a per-layer basis by searching for similar patches within the designated scale range. Experimental results show that our method improves the quality of rendered images over previous disocclusion hole-filling algorithms by up to 3.9dB in PSNR

    Why finance professors should be teaching Nietzsche

    Get PDF
    <p><strong>Abstract:</strong> Retinal images (RI) are widely used to diagnose a variety of eye conditions and diseases such as myopia and diabetic retinopathy. They are inherently characterised by having nonuniform illumination and low-contrast homogeneous regions which represent a unique set of challenges for retinal image registration (RIR). This paper investigates using the expectation maximization for principal component analysis based mutual information (EMPCA-MI) algorithm in RIR. It combines spatial features with mutual information to efficiently achieve improved registration performance. Experimental results for mono-modal RI datasets verify that EMPCA-MI<br>together with Powell-Brent optimization affords superior robustness in comparison with existing RIR methods, including the geometrical features method.</p> <p><br><strong>Index Terms</strong>— Image registration, principal component analysis, mutual information, expectation-maximization algorithms, retinopathy.</p> <p> </p> <p><strong>Poster presented at</strong>: 38th International Conference on Acoustics, Speech, and Signal Processing<br>(ICASSP), 26th to 31st May 2013, Vancouver, Canada.<br>doi: 10.1109/ICASSP.2013.6637824</p

    Sexing white 2D footprints using convolutional neural networks

    Get PDF
    Footprints are left, or obtained, in a variety of scenarios from crime scenes to anthropological investigations. Determining the sex of a footprint can be useful in screening such impressions and attempts have been made to do so using single or multi landmark distances, shape analyses and via the density of friction ridges. Here we explore the relative importance of different components in sexing two-dimensional foot impressions namely, size, shape and texture. We use a machine learning approach and compare this to more traditional methods of discrimination. Two datasets are used, a pilot data set collected from students at Bournemouth University (N = 196) and a larger data set collected by podiatrists at Sheffield NHS Teaching Hospital (N = 2677). Our convolutional neural network can sex a footprint with accuracy of around 90% on a test set of N = 267 footprint images using all image components, which is better than an expert can achieve. However, the quality of the impressions impacts on this success rate, but the results are promising and in time it may be possible to create an automated screening algorithm in which practitioners of whatever sort (medical or forensic) can obtain a first order sexing of a two-dimensional footprint

    Sexing Caucasian 2D footprints using convolutional neural networks

    Get PDF
    Footprints are left, or obtained, in a variety of scenarios from crime scenes to anthropological investigations. Determining the sex of a footprint can be useful in screening such impressions and attempts have been made to do so using single or multi landmark distances, shape analyses and via the density of friction ridges. Here we explore the relative importance of different components in sexing two-dimensional foot impressions namely, size, shape and texture. We use a machine learning approach and compare this to more traditional methods of discrimination. Two datasets are used, a pilot data set collected from students at Bournemouth University (N=196) and a larger data set collected by podiatrists at Sheffield NHS Teaching Hospital (N=2677). Our convolutional neural network can sex a footprint with accuracy of around 90% on a test set of N=267 footprint images using all image components, which is better than an expert can achieve. However, the quality of the impressions impacts on this success rate, but the results are promising and in time it may be possible to create an automated screening algorithm in which practitioners of whatever sort (medical or forensic) can obtain a first order sexing of a two-dimensional footprint

    Traffic violations monitoring and profiling system for the Transportation Management and Traffic Regulation Office (TMTRO)

    Get PDF
    Abstract onlyThis study was conducted to design and develop a Traffic Violations Monitoring and Profiling System for the TMTRO in the City of Iloilo. The purpose of this study is to computerize their system. We use the Net Beans as our software to develop this system and SQL as our database. The computerized system was capable of printing output data, manually processed by the clerk. The system was designed to generate reports without exerting too much time and effort, make computations fast, accurate and easy to search the desired transaction or information that has been encoded to the system. This study also includes developing an applet for the mobile phone used by the traffic aide and can print a TOP slip using a Bluetooth printer. The mobile phone has its own data store using micro SD card, where every successful transaction made by the traffic aide is stored. Through this memory card, the office clerk can migrate all the data to the system. The data are stored in the database to record the violator’s profile and violations committed. Reports could be easily generated for the daily payment transactions. This system provides reliable and accurate information for processing TOP and respective traffic violation penalty charges. Based on research and study conducted, the research team concludes that the Traffic Violations Monitoring and Profiling System would greatly benefit the TMTRO of Iloilo City. If the system would be fully integrated to the daily tasks of TMRO personnel, maximum efficiency could be reached at work.Includes bibliographical referencesBachelor of Science in Information Technolog
    corecore