986 research outputs found

    Biased diffusion in confined media: Test of the Fick-Jacobs approximation and validity criteria

    Get PDF
    We study biased, diffusive transport of Brownian particles through narrow, spatially periodic structures in which the motion is constrained in lateral directions. The problem is analyzed under the perspective of the Fick-Jacobs equation which accounts for the effect of the lateral confinement by introducing an entropic barrier in a one dimensional diffusion. The validity of this approximation, being based on the assumption of an instantaneous equilibration of the particle distribution in the cross-section of the structure, is analyzed by comparing the different time scales that characterize the problem. A validity criterion is established in terms of the shape of the structure and of the applied force. It is analytically corroborated and verified by numerical simulations that the critical value of the force up to which this description holds true scales as the square of the periodicity of the structure. The criterion can be visualized by means of a diagram representing the regions where the Fick-Jacobs description becomes inaccurate in terms of the scaled force versus the periodicity of the structure.Comment: 20 pages, 7 figure

    Entropic stochastic resonance: the constructive role of the unevenness

    Full text link
    We demonstrate the existence of stochastic resonance (SR) in confined systems arising from entropy variations associated to the presence of irregular boundaries. When the motion of a Brownian particle is constrained to a region with uneven boundaries, the presence of a periodic input may give rise to a peak in the spectral amplification factor and therefore to the appearance of the SR phenomenon. We have proved that the amplification factor depends on the shape of the region through which the particle moves and that by adjusting its characteristic geometric parameters one may optimize the response of the system. The situation in which the appearance of such entropic stochastic resonance (ESR) occurs is common for small-scale systems in which confinement and noise play an prominent role. The novel mechanism found could thus constitute an important tool for the characterization of these systems and can put to use for controlling their basic properties.Comment: 8 pages, 8 figure

    Effect of compressibility in bubble formation in closed systems

    Get PDF
    We analyze the stability of small bubbles in a closed system with fixed volume, temperature, and number of molecules. We show that there exists a minimum stable size of a bubble. Thus there exists a range of densities where no stable bubbles are allowed and the system has a homogeneous density which is lower than the coexistence density of the liquid. This becomes possible due to the finite liquid compressibility. Capillary analysis within the developed"modified bubble" model illustrates that the existence of the minimum bubble size is associated to the compressibility and it is not possible when the liquid is strictly incompressible. This finding is expected to have very important implications in cavitation and boiling

    Double Entropic Stochastic Resonance

    Full text link
    We demonstrate the appearance of a purely entropic stochastic resonance (ESR) occurring in a geometrically confined system, where the irregular boundaries cause entropic barriers. The interplay between a periodic input signal, a constant bias and intrinsic thermal noise leads to a resonant ESR-phenomenon in which feeble signals become amplified. This new phenomenon is characterized by the presence of two peaks in the spectral amplification at corresponding optimal values of the noise strength. The main peak is associated with the manifest stochastic resonance synchronization mechanism involving the inter-well noise-activated dynamics while a second peak relates to a regime of optimal sensitivity for intra-well dynamics. The nature of ESR, occurring when the origin of the barrier is entropic rather than energetic, offers new perspectives for novel investigations and potential applications. ESR by itself presents yet another case where one constructively can harvest noise in driven nonequilibrium systems.Comment: 6 pages, 7 figures ; Europhys. Lett., in press (2009

    Unifying thermodynamic and kinetic descriptions of single-molecule processes: RNA unfolding under tension

    Full text link
    We use mesoscopic non-equilibrium thermodynamics theory to describe RNA unfolding under tension. The theory introduces reaction coordinates, characterizing a continuum of states for each bond in the molecule. The unfolding considered is so slow that one can assume local equilibrium in the space of the reaction coordinates. In the quasi-stationary limit of high sequential barriers, our theory yields the master equation of a recently proposed sequential-step model. Non-linear switching kinetics is found between open and closed states. Our theory unifies the thermodynamic and kinetic descriptions and offers a systematic procedure to characterize the dynamics of the unfolding processComment: 13 pages, 3 figure

    Entropic Stochastic Resonance

    Get PDF
    We present a novel scheme for the appearance of Stochastic Resonance when the dynamics of a Brownian particle takes place in a confined medium. The presence of uneven boundaries, giving rise to an entropic contribution to the potential, may upon application of a periodic driving force result in an increase of the spectral amplification at an optimum value of the ambient noise level. This Entropic Stochastic Resonance (ESR), characteristic of small-scale systems, may constitute a useful mechanism for the manipulation and control of single-molecules and nano-devices.Comment: 4 pages, 3 figure

    Sharp A₂ inequality for haar shift operators

    Get PDF
    "Vegeu el resum a l'inici del document del fitxer adjunt"

    Optimization of crystal nucleation close to a metastable fluid-fluid phase transition

    Get PDF
    The presence of a metastable fluid-fluid critical point is thought to dramatically influence the crystallization pathway, increasing the nucleation rate by many orders of magnitude over the predictions of classical nucleation theory. We use molecular dynamics simulations to study the kinetics of crystallization in the vicinity of this metastable critical point and throughout the metastable fluid-fluid phase diagram. To quantitatively understand how the fluid-fluid phase separation affects the crystal nucleation, we evaluate accurately the kinetics and reconstruct the thermodynamic free-energy landscape of crystal formation. Contrary to expectations, we find no special advantage of the proximity of the metastable critical point on the crystallization rates. However, we find that the ultrafast formation of a dense liquid phase causes the crystallization to accelerate both near the metastable critical point and almost everywhere below the fluid-fluid spinodal line. These results unveil three different scenarios for crystallization that could guide the optimization of the process in experiments

    Phase space reduction of the one-dimensional Fokker-Planck (Kramers) equation

    Full text link
    A pointlike particle of finite mass m, moving in a one-dimensional viscous environment and biased by a spatially dependent force, is considered. We present a rigorous mapping of the Fokker-Planck equation, which determines evolution of the particle density in phase space, onto the spatial coordinate x. The result is the Smoluchowski equation, valid in the overdamped limit, m->0, with a series of corrections expanded in powers of m. They are determined unambiguously within the recurrence mapping procedure. The method and the results are interpreted on the simplest model with no field and on the damped harmonic oscillator.Comment: 13 pages, 1 figur
    corecore