831 research outputs found
One Loop Integrals at Finite Temperature and Density
The technique of decomposing Feynman diagrams at the one loop level into
elementary integrals is generalized to the imaginary time Matsubara formalism.
The three lowest integrals, containing one, two and three fermion lines, are
provided in a form that separates out the real and imaginary parts of these
complex functions, according to the input arguments, in a fashion that is
suitable for numerical evaluation. The forms given can be evaluated for
arbitrary values of temperature, particle mass, particle momenta and chemical
potential.Comment: 32 Pages REVTeX, 9 Figures available as separate fil
The evidence of quasi-free positronium state in GiPS-AMOC spectra of glycerol
We present the results of processing of Age-Momentum Correlation (AMOC)
spectra that were measured for glycerol by the Gamma-induced positron
spectroscopy (GiPS) facility. Our research has shown that the shape of
experimental s(t) curve cannot be explained without introduction of the
intermediate state of positronium (Ps), called quasi-free Ps. This state yields
the wide Doppler line near zero lifetimes. We discuss the possible properties
of this intermediate Ps state from the viewpoint of developed model. The amount
of annihilation events produced by quasi-free Ps is estimated to be less than
5% of total annihilations. In the proposed model, quasi-free Ps serves as a
precursor for trapped Ps of para- and ortho-states
Hadronization in the SU(3) Nambu - Jona-Lasinio model
The hadronization process for quarks combining into two mesons, q\bar q\to MM' at temperature T is described within the SU(3) Nambu- Jona-Lasinio model with finite current quark masses. Invariant matrix elements, cross-sections and transition rates are calculated to leading order in a 1/N_c expansion. Four independent classes, u\bar d, u\bar s, u\bar u and s\bar s\to hadrons are analysed, and the yield is found to be dominated by pion production. Threshold behaviour is determined by the exothermic or endothermic nature of the processes constituting the hadronization class. A strong suppression of transition rates is found at the pionic Mott temperature T_{M\pi}=212 MeV, at which the pion becomes a resonant state. The mean time for hadronization is calculated to be 2-4 fm/c near the Mott temperature. The calculation of strangeness changing processes indicates that hadronization accounts for a 1% increase in the absolute value of the kaon to pion ratio at T=150 MeV
Probing the effect of point defects on the leakage blocking capability of Al0.1Ga0.9N/Si structures using a monoenergetic positron beam
Vacancy-type defects in Al0.1Ga0.9N were probed using a monoenergetic positron beam. Al0.1Ga0.9N layers with different carbon doping concentrations ([C] = 5 x 10(17) -8 x 10(19) cm(-3)) were grown on Si substrates by metalorganic vapor phase epitaxy. The major defect species in Al0.1Ga0.9N was determined to be a cation vacancy (or cation vacancies) coupled with nitrogen vacancies and/or with carbon atoms at nitrogen sites (C(N)s). The charge state of the vacancies was positive because of the electron transfer from the defects to C-N-related acceptors. The defect charge state was changed from positive to neutral when the sample was illuminated with photon energy above 1.8 eV, and this energy range agreed with the yellow and blue luminescence. For the sample with high [C], the charge transition of the vacancies under illumination was found to be suppressed, which was attributed to the trapping of emitted electrons by C-N-related acceptors. With increasing [C], the breakdown voltage under the reverse bias condition increased. This was explained by the trapping of the injected electrons by the positively charged vacancies and C-N-related acceptors
Direct observation of twist mode in electroconvection in I52
I report on the direct observation of a uniform twist mode of the director
field in electroconvection in I52. Recent theoretical work suggests that such a
uniform twist mode of the director field is responsible for a number of
secondary bifurcations in both electroconvection and thermal convection in
nematics. I show here evidence that the proposed mechanisms are consistent with
being the source of the previously reported SO2 state of electroconvection in
I52. The same mechanisms also contribute to a tertiary Hopf bifurcation that I
observe in electroconvection in I52. There are quantitative differences between
the experiment and calculations that only include the twist mode. These
differences suggest that a complete description must include effects described
by the weak-electrolyte model of electroconvection
Dislocation Dynamics in an Anisotropic Stripe Pattern
The dynamics of dislocations confined to grain boundaries in a striped system
are studied using electroconvection in the nematic liquid crystal N4. In
electroconvection, a striped pattern of convection rolls forms for sufficiently
high driving voltages. We consider the case of a rapid change in the voltage
that takes the system from a uniform state to a state consisting of striped
domains with two different wavevectors. The domains are separated by domain
walls along one axis and a grain boundary of dislocations in the perpendicular
direction. The pattern evolves through dislocation motion parallel to the
domain walls. We report on features of the dislocation dynamics. The kinetics
of the domain motion are quantified using three measures: dislocation density,
average domain wall length, and the total domain wall length per area. All
three quantities exhibit behavior consistent with power law evolution in time,
with the defect density decaying as , the average domain wall length
growing as , and the total domain wall length decaying as .
The two different exponents are indicative of the anisotropic growth of domains
in the system.Comment: 8 figures: 7 jpeg and 1 pd
Temporal Modulation of the Control Parameter in Electroconvection in the Nematic Liquid Crystal I52
I report on the effects of a periodic modulation of the control parameter on
electroconvection in the nematic liquid crystal I52. Without modulation, the
primary bifurcation from the uniform state is a direct transition to a state of
spatiotemporal chaos. This state is the result of the interaction of four,
degenerate traveling modes: right and left zig and zag rolls. Periodic
modulations of the driving voltage at approximately twice the traveling
frequency are used. For a large enough modulation amplitude, standing waves
that consist of only zig or zag rolls are stabilized. The standing waves
exhibit regular behavior in space and time. Therefore, modulation of the
control parameter represents a method of eliminating spatiotemporal chaos. As
the modulation frequency is varied away from twice the traveling frequency,
standing waves that are a superposition of zig and zag rolls, i.e. standing
rectangles, are observed. These results are compared with existing predictions
based on coupled complex Ginzburg-Landau equations
Modeling the momentum distributions of annihilating electron-positron pairs in solids
Measuring the Doppler broadening of the positron annihilation radiation or
the angular correlation between the two annihilation gamma quanta reflects the
momentum distribution of electrons seen by positrons in the
material.Vacancy-type defects in solids localize positrons and the measured
spectra are sensitive to the detailed chemical and geometric environments of
the defects. However, the measured information is indirect and when using it in
defect identification comparisons with theoretically predicted spectra is
indispensable. In this article we present a computational scheme for
calculating momentum distributions of electron-positron pairs annihilating in
solids. Valence electron states and their interaction with ion cores are
described using the all-electron projector augmented-wave method, and atomic
orbitals are used to describe the core states. We apply our numerical scheme to
selected systems and compare three different enhancement (electron-positron
correlation) schemes previously used in the calculation of momentum
distributions of annihilating electron-positron pairs within the
density-functional theory. We show that the use of a state-dependent
enhancement scheme leads to better results than a position-dependent
enhancement factor in the case of ratios of Doppler spectra between different
systems. Further, we demonstrate the applicability of our scheme for studying
vacancy-type defects in metals and semiconductors. Especially we study the
effect of forces due to a positron localized at a vacancy-type defect on the
ionic relaxations.Comment: Submitted to Physical Review B on September 1 2005. Revised
manuscript submitted on November 14 200
- …
