9,338 research outputs found
The GeV-TeV Connection in Galactic gamma-ray sources
Recent observations with atmospheric Cherenkov telescope systems such as
H.E.S.S. and MAGIC have revealed a large number of new sources of
very-high-energy (VHE) gamma-rays from 100 GeV - 100 TeV, mostly concentrated
along the Galactic plane. At lower energies (100 MeV - 10 GeV) the
satellite-based instrument EGRET revealed a population of sources clustering
along the Galactic Plane. Given their adjacent energy bands a systematic
correlation study between the two source catalogues seems appropriate. Here,
the populations of Galactic sources in both energy domains are characterised on
observational as well as on phenomenological grounds. Surprisingly few common
sources are found in terms of positional coincidence and spectral consistency.
These common sources and their potential counterparts and emission mechanisms
will be discussed in detail. In cases of detection only in one energy band, for
the first time consistent upper limits in the other energy band have been
derived. The EGRET upper limits are rather unconstraining due to the
sensitivity mismatch to current VHE instruments. The VHE upper limits put
strong constraints on simple power-law extrapolation of several of the EGRET
spectra and thus strongly suggest cutoffs in the unexplored energy range from
10 GeV - 100 GeV. Physical reasons for the existence of cutoffs and for
differences in the source population at GeV and TeV energies will be discussed.
Finally, predictions will be derived for common GeV - TeV sources for the
upcoming GLAST mission bridging for the first time the energy gap between
current GeV and TeV instruments.Comment: (1) Kavli Institute for Particle Astrophysics and Cosmology (KIPAC),
Stanford, USA (2) Stanford University, W.W. Hansen Experimental Physics Lab
(HEPL) and KIPAC, Stanford, USA (3) ICREA & Institut de Ciencies de l'Espai
(IEEC-CSIC) Campus UAB, Fac. de Ciencies, Barcelona, Spain. (4) School of
Physics and Astronomy, University of Leeds, UK. Paper Submitted to Ap
A candidate gamma-ray pulsar in the supernova remnant CTA 1
We present a detailed analysis of the high energy gamma-ray source 2EG
J0008+7307. The source has a steady flux and a hard spectrum, softening above 2
GeV. The properties of the gamma-ray source are suggestive of emission from a
young pulsar in the spatially coincident CTA 1 supernova remnant, which has
recently been found to have a non-thermal X-ray plerion. Our 95% uncertainty
contour around the >1 GeV source position includes the point-like X-ray source
at the centre of the plerion. We propose that this object is a young pulsar and
is the most likely counterpart of 2EG J0008+7307.Comment: Accepted for publication in MNRAS. 6 pages including four PS figures.
Uses mn.te
Chasing the second gamma-ray bright isolated neutron star: 3EG J1835+5918/RX J1836.2+5925
The EGRET telescope aboard NASAs Compton GRO has repeatedly detected 3EG
J1835+5918, a bright and steady source of high-energy gamma-ray emission with
no identification suggested until recently. The long absence of any likely
counterpart for a bright gamma-ray source located 25 degrees off the Galactic
plane initiated several attempts of deep observations at other wavelengths. We
report on counterparts in X-rays on a basis of a 60 ksec ROSAT HRI image. In
order to conclude on the plausibility of the X-ray counterparts, we reanalyzed
data from EGRET at energies above 100 MeV and above 1 GeV, including data up to
CGRO observation cycle 7. The gamma-ray source location represents the latest
and probably the final positional assessment based on EGRET data. The X-ray
counterparts were studied during follow-up optical identification campaigns,
leaving only one object to be likely associated with the gamma-ray source 3EG
J1835+5918. This object, RX J1836.2+5925, has the characteristics of an
isolated neutron star and possibly of a radio-quiet pulsar.Comment: 5 pages, 3 figures. To appear in the Proceedings of the 270.
WE-Heraeus Seminar on Neutron Stars, Pulsars and Supernova Remnants, Jan.
21-25, 2002, Physikzentrum Bad Honnef, eds W. Becker, H. Lesch & J. Truemper.
Proceedings are available as MPE-Report 27
AVIRIS ground data-processing system
The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has been under development at JPL for the past four years. During this time, a dedicated ground data-processing system has been designed and implemented to store and process the large amounts of data expected. This paper reviews the objectives of this ground data-processing system and describes the hardware. An outline of the data flow through the system is given, and the software and incorporated algorithms developed specifically for the systematic processing of AVIRIS data are described
- …
