13,724 research outputs found
Sculplexity: Sculptures of Complexity using 3D printing
We show how to convert models of complex systems such as 2D cellular automata
into a 3D printed object. Our method takes into account the limitations
inherent to 3D printing processes and materials. Our approach automates the
greater part of this task, bypassing the use of CAD software and the need for
manual design. As a proof of concept, a physical object representing a modified
forest fire model was successfully printed. Automated conversion methods
similar to the ones developed here can be used to create objects for research,
for demonstration and teaching, for outreach, or simply for aesthetic pleasure.
As our outputs can be touched, they may be particularly useful for those with
visual disabilities.Comment: Free access to article on European Physics Letter
Slice Energy in Higher Order Gravity Theories and Conformal Transformations
We study the generic transport of slice energy between the scalar field
generated by the conformal transformation of higher-order gravity theories and
the matter component. We give precise relations for this exchange in the cases
of dust and perfect fluids. We show that, unless we are in a stationary
spacetime where slice energy is always conserved, in non-stationary situations
contributions to the total slice energy depend on whether or not test matter
follows geodesics in both frame representations of the dynamics, that is on
whether or not the two conformally related frames are physically
indistinguishable.Comment: 18 pages, references added, remark added in last Section related to
the choice of physical frame, various other improvements, final version to
appear in Gravitation and Cosmolog
Strong Magnetization Measured in the Cool Cores of Galaxy Clusters
Tangential discontinuities, seen as X-ray edges known as cold fronts (CFs),
are ubiquitous in cool-core galaxy clusters. We analyze all 17 deprojected CF
thermal profiles found in the literature, including three new CFs we
tentatively identify (in clusters A2204 and 2A0335). We discover small but
significant thermal pressure drops below all nonmerger CFs, and argue that they
arise from strong magnetic fields below and parallel to the discontinuity,
carrying 10%-20% of the pressure. Such magnetization can stabilize the CFs, and
explain the CF-radio minihalo connection.Comment: PRL accepted, additional control tests adde
Liquidity measures and cost of trading in an illiquid market
We provide the first in-depth study of trading on the Ukrainian stock exchange, using trade-by-trade data. Although Ukraine has some large listed companies, the market is quite illiquid. We study the efficiency of five liquidity measures in the market. The proportion of no-trading days is the most reliable of the five, while turnover, which is widely used in the literature, is a poor measure. On trading cost, trades in all size categories are executed within the quoted spread, as in other dealership markets, with medium-sized trades being the cheapest. The cost of sales is higher than the cost of purchases under all market conditions
Characteristics of Low-Latitude Coronal Holes near the Maximum of Solar cycle 24
We investigate the statistics of 288 low-latitude coronal holes extracted
from SDO/AIA-193 filtergrams over the time range 2011/01/01 to 2013/12/31. We
analyse the distribution of characteristic coronal hole properties, such as the
areas, mean AIA-193 intensities, and mean magnetic field densities, the local
distribution of the SDO/AIA-193 intensity and the magnetic field within the
coronal holes, and the distribution of magnetic flux tubes in coronal holes. We
find that the mean magnetic field density of all coronal holes under study is
3.0 +- 1.6 G, and the percentage of unbalanced magnetic flux is 49 +- 16 %. The
mean magnetic field density, the mean unsigned magnetic field density, and the
percentage of unbalanced magnetic flux of coronal holes depend strongly
pairwise on each other, with correlation coefficients cc > 0.92. Furthermore,
we find that the unbalanced magnetic flux of the coronal holes is predominantly
concentrated in magnetic flux tubes: 38 % (81 %) of the unbalanced magnetic
flux of coronal holes arises from only 1 % (10 %) of the coronal hole area,
clustered in magnetic flux tubes with field strengths > 50 G (10 G). The
average magnetic field density and the unbalanced magnetic flux derived from
the magnetic flux tubes correlate with the mean magnetic field density and the
unbalanced magnetic flux of the overall coronal hole (cc > 0.93). These
findings give evidence that the overall magnetic characteristics of coronal
holes are governed by the characteristics of the magnetic flux tubes.Comment: 15 figure
Viscous Dark Energy Models with Variable G and Lambda
We consider a cosmological model with bulk viscosity () and variable
cosmological ) and
gravitational () constants. The model exhibits many interesting cosmological
features. Inflation proceeds du to the presence of bulk viscosity and dark
energy without requiring the equation of state . During the
inflationary era the energy density () does not remain constant, as in
the de-Sitter type. Moreover, the cosmological and gravitational constants
increase exponentially with time, whereas the energy density and viscosity
decrease exponentially with time. The rate of mass creation during inflation is
found to be very huge suggesting that all matter in the universe was created
during inflation.Comment: 6 Latex page
Experimental investigations on sodium-filled heat pipes
The possibilities of producing heat pipes and, especially, the necessary capillary structures are discussed. Several types of heat pipes were made from stainless steel and tested at temperatures between 400 and 1055 deg C. The thermal power was determined by a calorimeter. Results indicate: bubble-free evaporation of sodium from rectangular open chennels is possible with a heat flux of more than 1,940 W/sq cm at 1055 C. The temperature drop along the tube could be measured only at low temperatures. A subdivided heat pipe worked against the gravitational field. A heat pipe with a capillary structure made of a rolled screen was supported by rings and bars operated at 250 W/sq cm heat flux in the evaporating region
Broadband Relaxation-Optimized Polarization Transfer in Magnetic Resonance
Many applications of magnetic resonance are limited by rapid loss of spin
coherence caused by large transverse relaxation rates. In nuclear magnetic
resonance (NMR) of large proteins, increased relaxation losses lead to poor
sensitivity of experiments and increased measurement time. In this paper we
develop broadband relaxation optimized pulse sequences (BB-CROP) which approach
fundamental limits of coherence transfer efficiency in the presence of very
general relaxation mechanisms that include cross-correlated relaxation. These
broadband transfer schemes use new techniques of chemical shift refocusing
(STAR echoes) that are tailored to specific trajectories of coupled spin
evolution. We present simulations and experimental data indicating significant
enhancement in the sensitivity of multi-dimensional NMR experiments of large
molecules by use of these methods
Influence of chemical and magnetic interface properties of Co-Fe-B / MgO / Co-Fe-B tunnel junctions on the annealing temperature dependence of the magnetoresistance
The knowledge of chemical and magnetic conditions at the Co40Fe40B20 / MgO
interface is important to interpret the strong annealing temperature dependence
of tunnel magnetoresistance of Co-Fe-B / MgO / Co-Fe-B magnetic tunnel
junctions, which increases with annealing temperature from 20% after annealing
at 200C up to a maximum value of 112% after annealing at 350C. While the well
defined nearest neighbor ordering indicating crystallinity of the MgO barrier
does not change by the annealing, a small amount of interfacial Fe-O at the
lower Co-Fe-B / MgO interface is found in the as grown samples, which is
completely reduced after annealing at 275C. This is accompanied by a
simultaneous increase of the Fe magnetic moment and the tunnel
magnetoresistance. However, the TMR of the MgO based junctions increases
further for higher annealing temperature which can not be caused by Fe-O
reduction. The occurrence of an x-ray absorption near-edge structure above the
Fe and Co L-edges after annealing at 350C indicates the recrystallization of
the Co-Fe-B electrode. This is prerequisite for coherent tunneling and has been
suggested to be responsible for the further increase of the TMR above 275C.
Simultaneously, the B concentration in the Co-Fe-B decreases with increasing
annealing temperature, at least some of the B diffuses towards or into the MgO
barrier and forms a B2O3 oxide
- …
