354 research outputs found
Isospin non-equilibrium in heavy-ion collisions at intermediate energies
We study the equilibration of isospin degree of freedom in intermediate
energy heavy-ion collisions using an isospin-dependent BUU model. It is found
that there exists a transition from the isospin equilibration at low energies
to non-equilibration at high energies as the beam energy varies across the
Fermi energy in central, asymmetric heavy-ion collisions. At beam energies
around 55 MeV/nucleon, the composite system in thermal equilibrium but isospin
non-equilibrium breaks up into two primary hot residues with N/Z ratios closely
related to those of the target and projectile respectively. The decay of these
forward-backward moving residues results in the strong isospin asymmetry in
space and the dependence of the isotopic composition of fragments on the N/Z
ratios of the target and projectile. These features are in good agreement with
those found recently in experiments at NSCL/MSU and TAMU, implications of these
findings are discussed.Comment: 9 pages, latex, + 3 figures available upon reques
Isospin Physics in Heavy-Ion Collisions at Intermediate Energies
In nuclear collisions induced by stable or radioactive neutron-rich nuclei a
transient state of nuclear matter with an appreciable isospin asymmetry as well
as thermal and compressional excitation can be created. This offers the
possibility to study the properties of nuclear matter in the region between
symmetric nuclear matter and pure neutron matter. In this review, we discuss
recent theoretical studies of the equation of state of isospin-asymmetric
nuclear matter and its relations to the properties of neutron stars and
radioactive nuclei. Chemical and mechanical instabilities as well as the
liquid-gas phase transition in asymmetric nuclear matter are investigated. The
in-medium nucleon-nucleon cross sections at different isospin states are
reviewed as they affect significantly the dynamics of heavy ion collisions
induced by radioactive beams. We then discuss an isospin-dependent transport
model, which includes different mean-field potentials and cross sections for
the proton and neutron, and its application to these reactions. Furthermore, we
review the comparisons between theoretical predictions and available
experimental data. In particular, we discuss the study of nuclear stopping in
terms of isospin equilibration, the dependence of nuclear collective flow and
balance energy on the isospin-dependent nuclear equation of state and cross
sections, the isospin dependence of total nuclear reaction cross sections, and
the role of isospin in preequilibrium nucleon emissions and subthreshold pion
production.Comment: 101 pages with embedded epsf figures, review article for
"International Journal of Modern Physics E: Nuclear Physics". Send request
for a hard copy to 1/author
Absence of Both Thyroid Hormone Transporters MCT8 and OATP1C1 Impairs Neural Stem Cell Fate in the Adult Mouse Subventricular Zone
: Adult neural stem cell (NSC) generation in vertebrate brains requires thyroid hormones (THs). How THs enter the NSC population is unknown, although TH availability determines proliferation and neuronal versus glial progenitor determination in murine subventricular zone (SVZ) NSCs. Mice display neurological signs of the severely disabling human disease, Allan-Herndon-Dudley syndrome, if they lack both MCT8 and OATP1C1 transporters, or MCT8 and deiodinase type 2. We analyzed the distribution of MCT8 and OATP1C1 in adult mouse SVZ. Both are strongly expressed in NSCs and at a lower level in neuronal cell precursors but not in oligodendrocyte progenitors. Next, we analyzed Mct8/Oatp1c1 double-knockout mice, where brain uptake of THs is strongly reduced. NSC proliferation and determination to neuronal fates were severely affected, but not SVZ-oligodendroglial progenitor generation. This work highlights how tight control of TH availability determines NSC function and glial-neuron cell-fate choice in adult brains
Examining the Interactions Between Expectations and tDCS Effects on Motor and Cognitive Performance
Background: Despite a growing literature and commercial market, the effectiveness of transcranial direct current stimulation (tDCS) remains questionable. Notably, studies rarely examine factors such as expectations of outcomes, which may influence tDCS response through placebo-like effects. Here we sought to determine whether expectations could influence the behavioral outcomes of a tDCS intervention.Methods: Through an initial study and self-replication, we recruited 121 naïve young adults 18–34 years of age (M = 21.14, SD = 3.58; 88 women). We evaluated expectations of tDCS and of motor and cognitive performance at three times: (i) at baseline; (ii) after being primed to have High or Low expectations of outcomes; and (iii) after a single session of sham-controlled anodal tDCS over the left or right motor cortex. Before and after stimulation, participants performed the Grooved Pegboard Test and a choice reaction time task as measures of motor dexterity, response time, and response inhibition.Results: Repeated measures ANOVA revealed that participants had varying, largely uncertain, expectations regarding tDCS effectiveness at baseline. Expectation ratings significantly increased or decreased in response to High or Low priming, respectively, and decreased following the intervention. Response times and accuracy on motor and cognitive measures were largely unaffected by expectation or stimulation conditions. Overall, our analysis revealed no effect attributable to baseline expectations, belief of group assignment, or experimental condition on behavioral outcomes. Subjective experience did not differ based on expectation or stimulation condition.Conclusions: Our results suggest no clear effects of tDCS or of expectations on our performance measures, highlighting the need for further investigations of such stimulation methods
From Environmental to Sustainability Programs: A Review of Sustainability Initiatives in the Italian Wine Sector
The Italian wine industry is strongly committed to sustainability: the stakeholders' interest for the topic is constantly growing and a wide number of sustainability programs have been launched in recent years, by both private businesses and consortiums. The launch of these initiatives has signaled the commitment of farmers and wine producers to the implementation of sustainability principles in viticulture and wine production, which is a positive signal. Unfortunately, however, the varied design of the sustainability initiatives and the differences in the objectives, methodologies, and proposed tools risks to create confusion, and undermine the positive aspects of these initiatives. In order to bring some clarity to this topic, we herein present a comparison of the most important sustainability programs in the Italian wine sector, with the overall objective of highlighting the opportunity to create synergies between the initiatives and define a common sustainability strategy for the Italian wine sector
Intercomparison of atmospheric carbonyl sulfide (TransCom-COS): 2. Evaluation of optimized fluxes using ground-based and aircraft observations
Removing critical gaps in chemical test methods by developing new assays for the identification of thyroid hormone system-disrupting chemicals—the athena project
The test methods that currently exist for the identification of thyroid hormone system-disrupting chemicals are woefully inadequate. There are currently no internationally validated in vitro assays, and test methods that can capture the consequences of diminished or enhanced thyroid hormone action on the developing brain are missing entirely. These gaps put the public at risk and risk assessors in a difficult position. Decisions about the status of chemicals as thyroid hormone system disruptors currently are based on inadequate toxicity data. The ATHENA project (Assays for the identification of Thyroid Hormone axis-disrupting chemicals: Elaborating Novel Assessment strategies) has been conceived to address these gaps. The project will develop new test methods for the disruption of thyroid hormone transport across biological barriers such as the blood–brain and blood–placenta barriers. It will also devise methods for the disruption of the downstream effects on the brain. ATHENA will deliver a testing strategy based on those elements of the thyroid hormone system that, when disrupted, could have the greatest impact on diminished or enhanced thyroid hormone action and therefore should be targeted through effective testing. To further enhance the impact of the ATHENA test method developments, the project will develop concepts for better international collaboration and development in the area of thyroid hormone system disruptor identification and regulation
Notch and Prospero Repress Proliferation following Cyclin E Overexpression in the Drosophila Bristle Lineage
Understanding the mechanisms that coordinate cell proliferation, cell cycle arrest, and cell differentiation is essential to address the problem of how “normal” versus pathological developmental processes take place. In the bristle lineage of the adult fly, we have tested the capacity of post-mitotic cells to re-enter the cell cycle in response to the overexpression of cyclin E. We show that only terminal cells in which the identity is independent of Notch pathway undergo extra divisions after CycE overexpression. Our analysis shows that the responsiveness of cells to forced proliferation depends on both Prospero, a fate determinant, and on the level of Notch pathway activity. Our results demonstrate that the terminal quiescent state and differentiation are regulated by two parallel mechanisms acting simultaneously on fate acquisition and cell cycle progression
Phase II study of preoperative radiation plus concurrent daily tegafur-uracil (UFT) with leucovorin for locally advanced rectal cancer
<p>Abstract</p> <p>Background</p> <p>Considerable variation in intravenous 5-fluorouracil (5-FU) metabolism can occur due to the wide range of dihydropyrimidine dehydrogenase (DPD) enzyme activity, which can affect both tolerability and efficacy. The oral fluoropyrimidine tegafur-uracil (UFT) is an effective, well-tolerated and convenient alternative to intravenous 5-FU. We undertook this study in patients with locally advanced rectal cancer to evaluate the efficacy and tolerability of UFT with leucovorin (LV) and preoperative radiotherapy and to evaluate the utility and limitations of multicenter staging using pre- and post-chemoradiotherapy ultrasound. We also performed a validated pretherapy assessment of DPD activity and assessed its potential influence on the tolerability of UFT treatment.</p> <p>Methods</p> <p>This phase II study assessed preoperative UFT with LV and radiotherapy in 85 patients with locally advanced T3 rectal cancer. Patients with potentially resectable tumors received UFT (300 mg/m/<sup>2</sup>/day), LV (75 mg/day), and pelvic radiotherapy (1.8 Gy/day, 45 Gy total) 5 days/week for 5 weeks then surgery 4-6 weeks later. The primary endpoints included tumor downstaging and the pathologic complete response (pCR) rate.</p> <p>Results</p> <p>Most adverse events were mild to moderate in nature. Preoperative grade 3/4 adverse events included diarrhea (n = 18, 21%) and nausea/vomiting (n = 5, 6%). Two patients heterozygous for dihydropyrimidine dehydrogenase gene (<it>DPYD</it>) experienced early grade 4 neutropenia (variant IVS14+1G > A) and diarrhea (variant 2846A > T). Pretreatment ultrasound TNM staging was compared with postchemoradiotherapy pathology TN staging and a significant shift towards earlier TNM stages was observed (p < 0.001). The overall downstaging rate was 42% for primary tumors and 44% for lymph nodes. The pCR rate was 8%. The sensitivity and specificity of ultrasound for staging was poor. Anal sphincter function was preserved in 55 patients (65%). Overall and recurrence-free survival at 3 years was 86.1% and 66.7%, respectively. Adjuvant chemotherapy was administered to 36 node-positive patients (mean duration 118 days).</p> <p>Conclusion</p> <p>Preoperative chemoradiotherapy using UFT with LV plus radiotherapy was well tolerated and effective and represents a convenient alternative to 5-FU-based chemoradiotherapy for the treatment of resectable rectal cancer. Pretreatment detection of DPD deficiency should be performed to avoid severe adverse events.</p
S-Phase Favours Notch Cell Responsiveness in the Drosophila Bristle Lineage
We have studied cell sensitivity to Notch pathway signalling throughout the cell cycle. As model system, we used the Drosophila bristle lineage where at each division N plays a crucial role in fate determination. Using in vivo imaging, we followed this lineage and activated the N-pathway at different moments of the secondary precursor cell cycle. We show that cells are more susceptible to respond to N-signalling during the S-phase. Thus, the period of heightened sensitivity coincided with the period of the S-phase. More importantly, modifications of S-phase temporality induced corresponding changes in the period of the cell's reactivity to N-activation. Moreover, S-phase abolition was correlated with a decrease in the expression of tramtrack, a downstream N-target gene. Finally, N cell responsiveness was modified after changes in chromatin packaging. We suggest that high-order chromatin structures associated with the S-phase create favourable conditions that increase the efficiency of the transcriptional machinery with respect to N-target genes
- …
