2,017 research outputs found
Magnetic-Field Amplification in the Thin X-ray Rims of SN1006
Several young supernova remnants (SNRs), including SN1006, emit synchrotron
X-rays in narrow filaments, hereafter thin rims, along their periphery. The
widths of these rims imply 50 to 100 G fields in the region immediately
behind the shock, far larger than expected for the interstellar medium
compressed by unmodified shocks, assuming electron radiative losses limit rim
widths. However, magnetic-field damping could also produce thin rims. Here we
review the literature on rim width calculations, summarizing the case for
magnetic-field amplification. We extend these calculations to include an
arbitrary power-law dependence of the diffusion coefficient on energy, . Loss-limited rim widths should shrink with increasing photon
energy, while magnetic-damping models predict widths almost independent of
photon energy. We use these results to analyze Chandra observations of SN 1006,
in particular the southwest limb. We parameterize the full widths at half
maximum (FWHM) in terms of energy as FWHM . Filament
widths in SN1006 decrease with energy; to , implying
magnetic field amplification by factors of 10 to 50, above the factor of 4
expected in strong unmodified shocks. For SN 1006, the rapid shrinkage rules
out magnetic damping models. It also favors short mean free paths (small
diffusion coefficients) and strong dependence of on energy ().Comment: Accepted by ApJ, 49 pages, 10 figure
Thermal Model Calibration for Minor Planets Observed with Wide-Field Infrared Survey Explorer/Neowise
With the Wide-field Infrared Survey Explorer (WISE), we have observed over 157,000 minor planets. Included in these are a number of near-Earth objects, main-belt asteroids, and irregular satellites which have well measured physical properties (via radar studies and in situ imaging) such as diameters. We have used these objects to validate models of thermal emission and reflected sunlight using the WISE measurements, as well as the color corrections derived in Wright et al. for the four WISE bandpasses as a function of effective temperature. We have used 50 objects with diameters measured by radar or in situ imaging to characterize the systematic errors implicit in using the WISE data with a faceted spherical near-Earth asteroid thermal model (NEATM) to compute diameters and albedos. By using the previously measured diameters and H magnitudes with a spherical NEATM model, we compute the predicted fluxes (after applying the color corrections given in Wright et al.) in each of the four WISE bands and compare them to the measured magnitudes. We find minimum systematic flux errors of 5%-10%, and hence minimum relative diameter and albedo errors of ~10% and ~20%, respectively. Additionally, visible albedos for the objects are computed and compared to the albedos at 3.4 μm and 4.6 μm, which contain a combination of reflected sunlight and thermal emission for most minor planets observed by WISE. Finally, we derive a linear relationship between subsolar temperature and effective temperature, which allows the color corrections given in Wright et al. to be used for minor planets by computing only subsolar temperature instead of a faceted thermophysical model. The thermal models derived in this paper are not intended to supplant previous measurements made using radar or spacecraft imaging; rather, we have used them to characterize the errors that should be expected when computing diameters and albedos of minor planets observed by WISE using a spherical NEATM model
A Mid-Infrared Study of the Class 0 Cluster in LDN 1448
We present ground-based mid-infrared observations of Class 0 protostars in
LDN 1448. Of the five known protostars in this cloud, we detected two, L1448N:A
and L1448C, at 12.5, 17.9, 20.8, and 24.5 microns, and a third, L1448 IRS 2, at
24.5 microns. We present high-resolution images of the detected sources, and
photometry or upper limits for all five Class 0 sources in this cloud. With
these data, we are able to augment existing spectral energy distributions
(SEDs) for all five objects and place them on an evolutionary status diagram.Comment: Accepted by the Astronomical Journal; 26 pages, 9 figure
Mid-Infrared Observations of Class I/Flat-Spectrum Systems in Six Nearby Molecular Clouds
We have obtained new mid-infrared observations of 65 Class I/Flat-Spectrum
(F.S.) objects in the Perseus, Taurus, Chamaeleon I/II, Rho Ophiuchi, and
Serpens dark clouds. We detected 45/48 (94%) of the single sources, 16/16
(100%) of the primary components, and 12/16 (75%) of the secondary/triple
components of the binary/multiple objects surveyed. The composite spectral
energy distributions (SEDs) for all of our sample sources are either Class I or
F.S., and, in 15/16 multiple systems, at least one of the individual components
displays a Class I or F.S. spectral index. However, the occurrence of mixed
pairings, such as F.S. with Class I, F.S. with Class II, and, in one case, F.S.
with Class III, is surprisingly frequent. Such behaviour is not consistent with
that of multiple systems among T Tauri stars (TTS), where the companion of a
classical TTS also tends to be a classical TTS, although other mixed pairings
have been previously observed among Class II objects. Based on an analysis of
the spectral indices of the individual binary components, there appears to be a
higher proportion of mixed Class I/F.S. systems (65-80%) than that of mixed
Classical/Weak-Lined TTS (25-40%), demonstrating that the envelopes of Class I/
F.S. systems are rapidly evolving during this evolutionary phase. We report the
discovery of a steep spectral index secondary companion to ISO-ChaI 97,
detected for the first time via our mid-infrared observations. In our previous
near- infrared imaging survey of binary/multiple Class I/F.S. sources, ISO-ChaI
97 appeared to be single. With a spectral index of Alpha >= 3.9, the secondary
component of this system is a member of a rare class of very steep spectral
index objects, those with Alpha > 3. Only three such objects have previously
been reported, all of which are either Class 0 or Class I.Comment: 31 pages, 4 figures, 6 table
The Compact Nucleus of the Deep Silicate Absorption Galaxy NGC 4418
High resolution, Hubble Space Telescope (HST) near-infrared and Keck
mid-infrared images of the heavily extinguished, infrared luminous galaxy NGC
4418 are presented. These data make it possible to observe the imbedded
near-infrared structure on scales of 10-20 pc, and to constrain the size of the
mid-infrared emitting region. The 1.1-2.2 um data of NGC 4418 show no clear
evidence of nuclear star clusters or of a reddened active galactic nucleus.
Instead, the nucleus of the galaxy consists of a ~100-200 pc linear structure
with fainter structures extending radially outward. The near-infrared colors of
the linear feature are consistent with a 10-300 Myr starburst suffering
moderate levels (few magnitudes) of visual extinction. At 7.9-24.5 um, NGC 4418
has estimated size upper limits in the range of 30-80 pc. These dimensions are
consistent with the highest resolution radio observations obtained to date of
NGC 4418, as well as the size of 50-70 pc expected for a blackbody with a
temperature derived from the 25 um, 60 um, and 100 um flux densities of the
galaxy. Further, a spectral energy distribution constructed from the
multi-wavelength mid-infrared observations show the strong silicate absorption
feature at 10 um, consistent with previous mid-infrared observations of NGC
4418. An infrared surface brightness of 2.1x10^13 L_sun kpc^-2 is derived for
NGC 4418. Such a value, though consistent with the surface brightness of warm
ultraluminous infrared galaxies (ULIGs: L_IR [8-1000 um] >~ 10^12 L_sun) such
as IRAS 05189-2524 and IRAS 08572+3915, is not large enough to distinguish NGC
4418 as a galaxy powered by an Active Galactic Nucleus (AGN), as opposed to a
lower surface brightness starburst.Comment: LaTex, 7 pages, including 2 jpg figures and 3 postscript figures, AJ,
in press (May, 2003
Radial Distribution of Dust Grains Around HR 4796A
We present high-dynamic-range images of circumstellar dust around HR 4796A
that were obtained with MIRLIN at the Keck II telescope at lambda = 7.9, 10.3,
12.5 and 24.5 um. We also present a new continuum measurement at 350 um
obtained at the Caltech Submillimeter Observatory. Emission is resolved in Keck
images at 12.5 and 24.5 um with PSF FWHM's of 0.37" and 0.55", respectively,
and confirms the presence of an outer ring centered at 70 AU. Unresolved excess
infrared emission is also detected at the stellar position and must originate
well within 13 AU of the star. A model of dust emission fit to flux densities
at 12.5, 20.8, and 24.5 um indicates dust grains are located 4(+3/-2) AU from
the star with effective size, 28+/-6 um, and an associated temperature of
260+/-40 K.
We simulate all extant data with a simple model of exozodiacal dust and an
outer exo-Kuiper ring. A two-component outer ring is necessary to fit both Keck
thermal infrared and HST scattered-light images. Bayesian parameter estimates
yield a total cross-sectional area of 0.055 AU^2 for grains roughly 4 AU from
the star and an outer-dust disk composed of a narrow large-grain ring embedded
within a wider ring of smaller grains. The narrow ring is 14+/-1 AU wide with
inner radius 66+/-1 AU and total cross-sectional area 245 AU^2. The outer ring
is 80+/-15 AU wide with inner radius 45+/-5 AU and total cross-sectional area
90 AU^2. Dust grains in the narrow ring are about 10 times larger and have
lower albedos than those in the wider ring. These properties are consistent
with a picture in which radiation pressure dominates the dispersal of an
exo-Kuiper belt.Comment: Accepted by Astrophysical Journal (Part1) on September 9, 2004. 13
pages, 10 figures, 2 table
- …
