5,678 research outputs found
Weyl corrections to holographic conductivity
For conformal field theories which admit a dual gravitational description in
anti-de Sitter space, electrical transport properties, such as conductivity and
charge diffusion, are determined by the dynamics of a U(1) gauge field in the
bulk and thus obey universality relations at the classical level due to the
uniqueness of the Maxwell action. We analyze corrections to these transport
parameters due to higher-dimension operators in the bulk action, beyond the
leading Maxwell term, of which the most significant involves a coupling to the
bulk Weyl tensor. We show that the ensuing corrections to conductivity and the
diffusion constant break the universal relation with the U(1) central charge
observed at leading order, but are nonetheless subject to interesting bounds
associated with causality in the boundary CFT.Comment: 15 pages, v2: references adde
Particle Astrophysics and Cosmology: Cosmic Laboratories for New Physics (Summary of the Snowmass 2001 P4 Working Group)
The past few years have seen dramatic breakthroughs and spectacular and
puzzling discoveries in astrophysics and cosmology. In many cases, the new
observations can only be explained with the introduction of new fundamental
physics. Here we summarize some of these recent advances. We then describe
several problem in astrophysics and cosmology, ripe for major advances, whose
resolution will likely require new physics.Comment: 27 pages, 14 figure
Electrical conductivity for radio-frequency fields in strongly magnetized plasmas with density fluctuations
A general investigation of the electrical conductivity for radio-frequency (RF) fields in strongly magnetized plasmas with small-scale density fluctuations is performed within the cold plasma hydrodynamical approximation. It is shown that in such plasmas an RF phenomenon similar to the Bohm diffusion exists: the presence of stochastic RF electric field in a turbulent plasma can lead to a strong enhancement of the RF currents flowing in the direction of the applied electric field components transverse to the magnetic field. The appearance of these turbulent drift currents favours energy transfer from the RF fields to the plasma and thus leads to their stronger damping. This effect allows us to interpret quantitatively the enhanced damping of the magnetosonic waves observed in several experiments. The magnetized radially inhomogeneous cylindrical plasmas in these experiments are characterized by density fluctuations due to drift instabilities. The theory has also a number of other applications; an example is given of the whistlers damped by the ionospheric density fluctuation
Substrate effects on surface magetetism of Fe/W(110) from first principles
Surface magnetic properties of the pseudomorphic Fe(110) monolayer on a
W(110) substrate are investigated from first principles as a function of the
substrate thickness (up to eight layers). Analyzing the magnetocrystalline
anisotropy energies, we find stable (with respect to the number of substrate
layers) in-plane easy and hard axes of magnetization along the [1[overline 1]0]
and [001] directions, respectively, reaching a value in good agreement with
experiment for thick substrates. Additionally, the changes to the magnetic spin
moments and the density of the Fe d states are analyzed with respect to the
number of substrate layers as well as with respect to the direction of
magnetization. With respect to the number of W(110) substrate layers beneath
the Fe(110) surface, we find that the first four substrate layers have a large
influence on the electronic and magnetic properties of the surface. Beyond the
fourth layer, the substrate has only marginal influence on the surface
properties.Comment: 8 Pages, 3 Figures, 3 Table
No alignment of cattle along geomagnetic field lines found
This paper presents a study of the body orientation of domestic cattle on
free pastures in several European states, based on Google satellite
photographs. In sum, 232 herds with 3412 individuals were evaluated. Two
independent groups participated in our study and came to the same conclusion
that, in contradiction to the recent findings of other researchers, no
alignment of the animals and of their herds along geomagnetic field lines could
be found. Several possible reasons for this discrepancy should be taken into
account: poor quality of Google satellite photographs, difficulties in
determining the body axis, selection of herds or animals within herds, lack of
blinding in the evaluation, possible subconscious bias, and, most importantly,
high sensitivity of the calculated main directions of the Rayleigh vectors to
some kind of bias or to some overlooked or ignored confounder. This factor
could easily have led to an unsubstantiated positive conclusion about the
existence of magnetoreception.Comment: Added electronic supplement with source dat
Solar Gamma Rays Powered by Secluded Dark Matter
Secluded dark matter models, in which WIMPs annihilate first into metastable
mediators, can present novel indirect detection signatures in the form of gamma
rays and fluxes of charged particles arriving from directions correlated with
the centers of large astrophysical bodies within the solar system, such as the
Sun and larger planets. This naturally occurs if the mean free path of the
mediator is in excess of the solar (or planetary) radius. We show that existing
constraints from water Cerenkov detectors already provide a novel probe of the
parameter space of these models, complementary to other sources, with
significant scope for future improvement from high angular resolution gamma-ray
telescopes such as Fermi-LAT. Fluxes of charged particles produced in mediator
decays are also capable of contributing a significant solar system component to
the spectrum of energetic electrons and positrons, a possibility which can be
tested with the directional and timing information of PAMELA and Fermi.Comment: 22 pages, 3 figure
- …
