2,628 research outputs found
Dynamical Masses in Luminous Infrared Galaxies
We have studied the dynamics and masses of a sample of ten nearby luminous
and ultraluminous infrared galaxies (LIRGS and ULIRGs), using 2.3 micron CO
absorption line spectroscopy and near-infrared H- and Ks-band imaging. By
combining velocity dispersions derived from the spectroscopy, disk
scale-lengths obtained from the imaging, and a set of likely model density
profiles, we calculate dynamical masses for each LIRG. For the majority of the
sample, it is difficult to reconcile our mass estimates with the large amounts
of gas derived from millimeter observations and from a standard conversion
between CO emission and H_2 mass. Our results imply that LIRGs do not have huge
amounts of molecular gas (10^10-10^11 Msolar) at their centers, and support
previous indications that the standard conversion of CO to H_2 probably
overestimates the gas masses and cannot be used in these environments. This in
turn suggests much more modest levels of extinction in the near-infrared for
LIRGs than previously predicted (A_V~10-20 versus A_V~100-1000). The lower gas
mass estimates indicated by our observations imply that the star formation
efficiency in these systems is very high and is triggered by cloud-cloud
collisions, shocks, and winds rather than by gravitational instabilities in
circumnuclear gas disks.Comment: 14 pages, 2 figures, accepted to Ap
The Extinction Distribution in the Galaxy UGC 5041
We probe the dust extinction through the foreground disk of the overlapping
galaxy pair UGC 5041 by analyzing B,I, and H band images. The inclined
foreground disk of this infrared-selected pair is almost opaque in B at a
projected distance of ~8kpc. From the images, we estimate directly the
area-weighted distribution of differential near-IR extinction: it is nearly
Gaussian with =0.6 and sigma=0.27. For a homogenous dust
distribution and a Milky Way extinction curve, this corresponds to a face-on
distribution p(tau) with a mean of =0.34 and sigma_V=0.15. For a clumpy
dust model the optical depth estimate increases to =0.41 and
sigma_V=0.19. Even though the galaxy pair is subject to different selection
biases and our analysis is subject to different systematics, the result is
consistent with existing case studies, indicating that ~0.3 is generic
for late-type spirals near their half-light radii.
We outline how to estimate from p(tau) by how much background quasars are
underreresented, where projected within ~10kpc of nearby spirals, such as
damped Ly-alpha absorbers or gravitational lenses; from our data we derive a
factor of two deficit for flux-limited, optical surveys.Comment: 18 pages, 3 figures; To appear in the Astronomical Journa
Results from the CASTLES Survey of Gravitational Lenses
We show that most gravitational lenses lie on the passively evolving
fundamental plane for early-type galaxies. For burst star formation models (1
Gyr of star formation, then quiescence) in low Omega_0 cosmologies, the stellar
populations of the lens galaxies must have formed at z_f > 2. Typical lens
galaxies contain modest amounts of patchy extinction, with a median
differential extinction for the optical (radio) selected lenses of E(B-V) =
0.04 (0.07) mag. The dust can be used to determine both extinction laws and
lens redshifts. For example, the z_l=0.96 elliptical lens in MG0414+0534 has an
R_V=1.7 +/- 0.1 mean extinction law. Arc and ring images of the quasar and AGN
source host galaxies are commonly seen in NICMOS H band observations. The hosts
are typically blue, L < L_* galaxies.Comment: 12 pages, 10 figures, from Proceedings of the 9th Annual Astrophysics
Conference in Maryland, After the Dark Ages: When Galaxies Were Youn
A Cosmic Variance Cookbook
Deep pencil beam surveys (<1 deg^2) are of fundamental importance for
studying the high-redshift universe. However, inferences about galaxy
population properties are in practice limited by 'cosmic variance'. This is the
uncertainty in observational estimates of the number density of galaxies
arising from the underlying large-scale density fluctuations. This source of
uncertainty can be significant, especially for surveys which cover only small
areas and for massive high-redshift galaxies. Cosmic variance for a given
galaxy population can be determined using predictions from cold dark matter
theory and the galaxy bias. In this paper we provide tools for experiment
design and interpretation. For a given survey geometry we present the cosmic
variance of dark matter as a function of mean redshift z and redshift bin size
Dz. Using a halo occupation model to predict galaxy clustering, we derive the
galaxy bias as a function of mean redshift for galaxy samples of a given
stellar mass range. In the linear regime, the cosmic variance of these galaxy
samples is the product of the galaxy bias and the dark matter cosmic variance.
We present a simple recipe using a fitting function to compute cosmic variance
as a function of the angular dimensions of the field, z, Dz and stellar mass
m*. We also provide tabulated values and a software tool. We find that for
GOODS at z=2 and with Dz=0.5 the relative cosmic variance of galaxies with
m*>10^11 Msun is ~38%, while it is ~27% for GEMS and ~12% for COSMOS. For
galaxies of m*~10^10 Msun the relative cosmic variance is ~19% for GOODS, ~13%
for GEMS and ~6% for COSMOS. This implies that cosmic variance is a significant
source of uncertainty at z=2 for small fields and massive galaxies, while for
larger fields and intermediate mass galaxies cosmic variance is less serious.Comment: 8 pages, 4 figures, 5 tables, submitted to Ap
A Search for Planetary Nebulae With the SDSS: the outer regions of M31
We have developed a method to identify planetary nebula (PN) candidates in
imaging data of the Sloan Digital Sky Survey (SDSS). This method exploits the
SDSS' five-band sampling of emission lines in PN spectra, which results in a
color signature distinct from that of other sources. Selection criteria based
on this signature can be applied to nearby galaxies in which PNe appear as
point sources. We applied these criteria to the whole area of M31 as scanned by
the SDSS, selecting 167 PN candidates that are located in the outer regions of
M31. The spectra of 80 selected candidates were then observed with the 2.2m
telescope at Calar Alto Observatory. These observations and cross-checks with
literature data show that our method has a selection rate efficiency of about
90%, but the efficiency is different for the different groups of PNe
candidates.
In the outer regions of M31, PNe trace different well-known morphological
features like the Northern Spur, the NGC205 Loop, the G1 Clump, etc. In
general, the distribution of PNe in the outer region 8<R<20 kpc along the minor
axis shows the "extended disk" - a rotationally supported low surface
brightness structure with an exponential scale length of 3.21+/-0.14 kpc and a
total mass of ~10^10 M_{\sun}, which is equivalent to the mass of M33. We
report the discovery of three PN candidates with projected locations in the
center of Andromeda NE, a very low surface brightness giant stellar structure
in the outer halo of M31. Two of the PNe were spectroscopically confirmed as
genuine PNe. These two PNe are located at projected distances along the major
axis of ~48 Kpc and ~41 Kpc from the center of M31 and are the most distant PNe
in M31 found up to now.Comment: 58 pages, 17 figures, 2 tables, Accepted to Astronomical Journa
Across the Indian Ocean: a remarkable example of trans-oceanic dispersal in an austral mygalomorph spider
The Migidae are a family of austral trapdoor spiders known to show a highly restricted and disjunct distribution pattern. Here, we aim to investigate the phylogeny and historical biogeography of the group, which was previously thought to be vicariant in origin, and examine the biogeographic origins of the genus Moggridgea using a dated multi-gene phylogeny. Moggridgea specimens were sampled from southern Australia and Africa, and Bertmainus was sampled from Western Australia. Sanger sequencing methods were used to generate a robust six marker molecular dataset consisting of the nuclear genes 18S rRNA, 28S rRNA, ITS rRNA, XPNPEP3 and H3 and the mitochondrial gene COI. Bayesian and Maximum Likelihood methods were used to analyse the dataset, and the key dispersal nodes were dated using BEAST. Based on our data, we demonstrate that Moggridgea rainbowi from Kangaroo Island, Australia is a valid member of the otherwise African genus Moggridgea. Molecular clock dating analyses show that the inter-specific divergence of M. rainbowi from African congeners is between 2.27-16.02 million years ago (Mya). This divergence date significantly post-dates the separation of Africa from Gondwana (95 Mya) and therefore does not support a vicariant origin for Australian Moggridgea. It also pre-dates human colonisation of Kangaroo Island, a result which is further supported by the intra-specific divergence date of 1.10-6.39 Mya between separate populations on Kangaroo Island. These analyses provide strong support for the hypothesis that Moggridgea colonised Australia via long-distance trans-Indian Ocean dispersal, representing the first such documented case in a mygalomorph spider.Sophie E. Harrison, Mark S. Harvey, Steve J. B. Cooper, Andrew D. Austin,
Michael G. Ri
HST/STIS Spectra of Nuclear Star Clusters in Spiral Galaxies: Dependence of Age and Mass On Hubble Type
(Abridged) We study the nuclear star clusters in spiral galaxies of various
Hubble types using spectra obtained with STIS on-board HST. We observed the
nuclear clusters in 40 galaxies, selected from two previous HST/WFPC2 imaging
surveys. The spectra provide a better separation of cluster light from
underlying galaxy light than is possible with ground-based spectra. To infer
the star formation history, metallicity and dust extinction, we fit weighted
superpositions of single-age stellar population templates to the spectra. The
luminosity-weighted age ranges from 10 Myrs to 10 Gyrs. The stellar populations
of NCs are generally best fit as a mixture of populations of different ages.
This indicates that NCs did not form in a single event, but instead they had
additional star formation long after the oldest stars formed. On average, the
sample clusters in late-type spirals have a younger luminosity-weighted mean
age than those in early-type spirals (log(age/yr) = 8.37+/-0.25 vs.
9.23+/-0.21). The average cluster masses are smaller in late-type spirals than
in early-type spirals (log(M/Msun) = 6.25+/-0.21 vs. 7.63+/-0.24), and exceed
the masses typical of globular clusters. The cluster mass correlates strongly
with both the Hubble type of the host galaxy and the luminosity of its bulge.
The latter correlation has the same slope as the well-known correlation between
supermassive black hole mass and bulge luminosity. The properties of both
nuclear clusters and black holes are therefore intimately connected to the
properties of the host galaxy.Comment: AJ submitted (original submission Nov 30, 2005, present version
includes changes based on referee recommendations). 69 pages, 16 figures, 7
table
Galaxies with Spiral Structure up to z = 0.87 --Limits on M/L and the Stellar Velocity Dispersion
We consider seven distant galaxies with clearly evident spiral structure from
HST images. Three of these were chosen from Vogt et al. (1996) (VFP) and have
measured rotational velocities. Five were chosen from the Medium Deep Survey
and are studied in Sarajedini et al. 1996 (SGGR), and one galaxy is found in
both papers. We place upper limits on their mass-to-light ratios (M/L) by
computing M/L_B for a maximal disk. We find that these galaxies have maximal
disk mass-to-light ratios M/L_B = 1.5 - 3.5 M_sol/L_Bsol at the low end, but
within the range seen in nearby galaxies. The mass-to-light ratios are low
enough to suggest that the galaxies contain a young, rapidly formed stellar
population.
By using a Toomre stability criterion for formation of spiral structure, we
place constraints on the ratio of M/L to the stellar velocity dispersion. If
these galaxies have maximal disks they would have to be nearly unstable so as
to have small enough velocity dispersions that their disks are not
unrealistically thick. This suggests that there is a substantial amount of dark
matter present in the luminous regions of the galaxy.Comment: AAS Latex + PS Figure, accepted for publication in A
- …
