2,323 research outputs found
Towards Deconstruction of the Type D (2,0) Theory
We propose a four-dimensional supersymmetric theory that deconstructs, in a
particular limit, the six-dimensional theory of type . This 4d
theory is defined by a necklace quiver with alternating gauge nodes
and . We test this proposal by comparing the
6d half-BPS index to the Higgs branch Hilbert series of the 4d theory. In the
process, we overcome several technical difficulties, such as Hilbert series
calculations for non-complete intersections, and the choice of
versus gauge groups. Consistently, the result matches the Coulomb
branch formula for the mirror theory upon reduction to 3d
On positivity of Ehrhart polynomials
Ehrhart discovered that the function that counts the number of lattice points
in dilations of an integral polytope is a polynomial. We call the coefficients
of this polynomial Ehrhart coefficients, and say a polytope is Ehrhart positive
if all Ehrhart coefficients are positive (which is not true for all integral
polytopes). The main purpose of this article is to survey interesting families
of polytopes that are known to be Ehrhart positive and discuss the reasons from
which their Ehrhart positivity follows. We also include examples of polytopes
that have negative Ehrhart coefficients and polytopes that are conjectured to
be Ehrhart positive, as well as pose a few relevant questions.Comment: 40 pages, 7 figures. To appear in in Recent Trends in Algebraic
Combinatorics, a volume of the Association for Women in Mathematics Series,
Springer International Publishin
Electrochemical characterization and regeneration of sulfur poisoned Pt catalysts in aqueous media
Understanding the poisoning and recovery of precious metal catalysts is greatly relevant for the chemical industry dealing with the synthesis of organic compounds. For example, hydrogenation reactions typically use platinum catalysts and sulfuric acid media, leading to poisoning by sulfur-containing species. In this work, we have applied electrochemical methods to understand the status and recovery of Pt catalysts by studying the electro-oxidation of a family of sulfur-containing species adsorbed at several types of Pt electrodes: (i) polycrystalline Pt foil; (ii) Pt single-crystal electrodes; and (iii) Pt nanoparticles supported on Vulcan carbon. The results obtained from polycrystalline Pt electrodes and Pt nanoparticles supported on Vulcan carbon demonstrate that all sulfur-containing species with different oxidation states (2-, 3+ and 4+) lead to the poisoning of Pt active sites. X-ray photoelectron spectroscopy (XPS) analysis was employed to elucidate the chemical state of sulfur species during the recovery process. The degree of poisoning decreased with increased sulfur oxidation state, while the rate of regeneration of the Pt surfaces generally increases with the oxidation state of the sulfur species. Finally, the use of Pt single-crystal electrodes reveals the surface-structure sensitivity of the oxidation of the sulfur species. This information could be useful in designing catalysts that are less susceptible to poisoning and/or more easily regenerated. These studies demonstrate voltammetry to be a powerful method for assessing the status of platinum surfaces and for recovering catalyst activity, such that electrochemical methods could find applications as sensors in catalysis and for catalyst recovery in-situ
Mitochondrial phylogeography and demographic history of the Vicuña: implications for conservation
The vicuña (Vicugna vicugna; Miller, 1924) is a conservation success story, having recovered from near extinction in the 1960s to current population levels estimated at 275 000. However, lack of information about its demographic history and genetic diversity has limited both our understanding of its recovery and the development of science-based conservation measures. To examine the evolution and recent demographic history of the vicuña across its current range and to assess its genetic variation and population structure, we sequenced mitochondrial DNA from the control region (CR) for 261 individuals from 29 populations across Peru, Chile and Argentina. Our results suggest that populations currently designated as Vicugna vicugna vicugna and Vicugna vicugna mensalis comprise separate mitochondrial lineages. The current population distribution appears to be the result of a recent demographic expansion associated with the last major glacial event of the Pleistocene in the northern (18 to 22°S) dry Andes 14–12 000 years ago and the establishment of an extremely arid belt known as the 'Dry Diagonal' to 29°S. Within the Dry Diagonal, small populations of V. v. vicugna appear to have survived showing the genetic signature of demographic isolation, whereas to the north V. v. mensalis populations underwent a rapid demographic expansion before recent anthropogenic impacts
Inheritance patterns in citation networks reveal scientific memes
Memes are the cultural equivalent of genes that spread across human culture
by means of imitation. What makes a meme and what distinguishes it from other
forms of information, however, is still poorly understood. Our analysis of
memes in the scientific literature reveals that they are governed by a
surprisingly simple relationship between frequency of occurrence and the degree
to which they propagate along the citation graph. We propose a simple
formalization of this pattern and we validate it with data from close to 50
million publication records from the Web of Science, PubMed Central, and the
American Physical Society. Evaluations relying on human annotators, citation
network randomizations, and comparisons with several alternative approaches
confirm that our formula is accurate and effective, without a dependence on
linguistic or ontological knowledge and without the application of arbitrary
thresholds or filters.Comment: 8 two-column pages, 5 figures; accepted for publication in Physical
Review
Pseudo-single crystal electrochemistry on polycrystalline electrodes : visualizing activity at grains and grain boundaries on platinum for the Fe2+/Fe3+ redox reaction
The influence of electrode surface structure on electrochemical reaction rates and mechanisms is a major theme in electrochemical research, especially as electrodes with inherent structural heterogeneities are used ubiquitously. Yet, probing local electrochemistry and surface structure at complex surfaces is challenging. In this paper, high spatial resolution scanning electrochemical cell microscopy (SECCM) complemented with electron backscatter diffraction (EBSD) is demonstrated as a means of performing ‘pseudo-single-crystal’ electrochemical measurements at individual grains of a polycrystalline platinum electrode, while also allowing grain boundaries to be probed. Using the Fe2+/3+ couple as an illustrative case, a strong correlation is found between local surface structure and electrochemical activity. Variations in electrochemical activity for individual high index grains, visualized in a weakly adsorbing perchlorate medium, show that there is higher activity on grains with a significant (101) orientation contribution, compared to those with (001) and (111) contribution, consistent with findings on single-crystal electrodes. Interestingly, for Fe2+ oxidation in a sulfate medium a different pattern of activity emerges. Here, SECCM reveals only minor variations in activity between individual grains, again consistent with single-crystal studies, with a greatly enhanced activity at grain boundaries. This suggests that these sites may contribute significantly to the overall electrochemical behavior measured on the macroscale
Chromosomal-level assembly of the Asian Seabass genome using long sequence reads and multi-layered scaffolding
We report here the ~670 Mb genome assembly of the Asian seabass (Lates calcarifer), a tropical marine teleost. We used long-read sequencing augmented by transcriptomics, optical and genetic mapping along with shared synteny from closely related fish species to derive a chromosome-level assembly with a contig N50 size over 1 Mb and scaffold N50 size over 25 Mb that span ~90% of the genome. The population structure of L. calcarifer species complex was analyzed by re-sequencing 61 individuals representing various regions across the species' native range. SNP analyses identified high levels of genetic diversity and confirmed earlier indications of a population stratification comprising three clades with signs of admixture apparent in the South-East Asian population. The quality of the Asian seabass genome assembly far exceeds that of any other fish species, and will serve as a new standard for fish genomics
Super congruences and Euler numbers
Let be a prime. We prove that
, where E_0,E_1,E_2,... are Euler numbers. Our new approach is of
combinatorial nature. We also formulate many conjectures concerning super
congruences and relate most of them to Euler numbers or Bernoulli numbers.
Motivated by our investigation of super congruences, we also raise a conjecture
on 7 new series for , and the constant
(with (-) the Jacobi symbol), two of which are
and
\sum_{k>0}(15k-4)(-27)^{k-1}/(k^3\binom{2k}{k}^2\binom{3k}k)=K.$
Quantifying the CDK inhibitor VMY-1-103\u27s activity and tissue levels in an in vivo tumor model by LC-MS/MS and by MRI.
The development of new small molecule-based therapeutic drugs requires accurate quantification of drug bioavailability, biological activity and treatment efficacy. Rapidly measuring these endpoints is often hampered by the lack of efficient assay platforms with high sensitivity and specificity. Using an in vivo model system, we report a simple and sensitive liquid chromatography-tandem mass spectrometry assay to quantify the bioavailability of a recently developed novel cyclin-dependent kinase inhibitor VMY-1-103, a purvalanol B-based analog whose biological activity is enhanced via dansylation. We developed a rapid organic phase extraction technique and validated wide and functional VMY-1-103 distribution in various mouse tissues, consistent with its enhanced potency previously observed in a variety of human cancer cell lines. More importantly, in vivo MRI and single voxel proton MR-Spectroscopy further established that VMY-1-103 inhibited disease progression and affected key metabolites in a mouse model of hedgehog-driven medulloblastoma
Mixed Th1 and Th2 Mycobacterium tuberculosis-specific CD4 T cell responses in patients with active pulmonary tuberculosis from Tanzania.
Mycobacterium tuberculosis (Mtb) and helminth infections elicit antagonistic immune effector functions and are co-endemic in several regions of the world. We therefore hypothesized that helminth infection may influence Mtb-specific T-cell immune responses. We evaluated the cytokine profile of Mtb-specific T cells in 72 individuals with pulmonary TB disease recruited from two Sub-Saharan regions with high and moderate helminth burden i.e. 55 from Tanzania (TZ) and 17 from South Africa (SA), respectively. We showed that Mtb-specific CD4 T-cell functional profile of TB patients from Tanzania are primarily composed of polyfunctional Th1 and Th2 cells, associated with increased expression of Gata-3 and reduced expression of T-bet in memory CD4 T cells. In contrast, the cytokine profile of Mtb-specific CD4 T cells of TB patients from SA was dominated by single IFN-γ and dual IFN-γ/TNF-α and associated with TB-induced systemic inflammation and elevated serum levels of type I IFNs. Of note, the proportion of patients with Mtb-specific CD8 T cells was significantly reduced in Mtb/helminth co-infected patients from TZ. It is likely that the underlying helminth infection and possibly genetic and other unknown environmental factors may have caused the induction of mixed Th1/Th2 Mtb-specific CD4 T cell responses in patients from TZ. Taken together, these results indicate that the generation of Mtb-specific CD4 and CD8 T cell responses may be substantially influenced by environmental factors in vivo. These observations may have major impact in the identification of immune biomarkers of disease status and correlates of protection
- …
