15 research outputs found

    The use of cystatin C to inhibit epithelial–mesenchymal transition and morphological transformation stimulated by transforming growth factor-β

    Get PDF
    INTRODUCTION: Transforming growth factor-β (TGF-β) is a potent suppressor of mammary epithelial cell (MEC) proliferation and is thus an inhibitor of mammary tumor formation. Malignant MECs typically evolve resistance to TGF-β-mediated growth arrest, enhancing their proliferation, invasion, and metastasis when stimulated by TGF-β. Recent findings suggest that therapeutics designed to antagonize TGF-β signaling may alleviate breast cancer progression, thereby improving the prognosis and treatment of breast cancer patients. We identified the cysteine protease inhibitor cystatin C (CystC) as a novel TGF-β type II receptor antagonist that inhibits TGF-β binding and signaling in normal and cancer cells. We hypothesized that the oncogenic activities of TGF-β, particularly its stimulation of mammary epithelial–mesenchymal transition (EMT), can be prevented by CystC. METHOD: Retroviral infection was used to constitutively express CystC or a CystC mutant impaired in its ability to inhibit cathepsin protease activity (namely Δ14CystC) in murine NMuMG MECs and in normal rat kidney (NRK) fibroblasts. The effect of recombinant CystC administration or CystC expression on TGF-β stimulation of NMuMG cell EMT in vitro was determined with immunofluorescence to monitor rearrangements of actin cytoskeletal architecture and E-cadherin expression. Soft-agar growth assays were performed to determine the effectiveness of CystC in preventing TGF-β stimulation of morphological transformation and anchorage-independent growth in NRK fibroblasts. Matrigel invasion assays were performed to determine the ability of CystC to inhibit NMuMG and NRK motility stimulated by TGF-β. RESULTS: CystC and Δ14CystC both inhibited NMuMG cell EMT and invasion stimulated by TGF-β by preventing actin cytoskeletal rearrangements and E-cadherin downregulation. Moreover, both CystC molecules completely antagonized TGF-β-mediated morphological transformation and anchorage-independent growth of NRK cells, and inhibited their invasion through synthetic basement membranes. Both CystC and Δ14CystC also inhibited TGF-β signaling in two tumorigenic human breast cancer cell lines. CONCLUSION: Our findings show that TGF-β stimulation of initiating metastatic events, including decreased cell polarization, reduced cell–cell contact, and elevated cell invasion and migration, are prevented by CystC treatment. Our findings also suggest that the future development of CystC or its peptide mimetics hold the potential to improve the therapeutic response of human breast cancers regulated by TGF-β

    Smart Learning through Pervasive Computing Devices

    Full text link
    An increasing number of educators are calling for high standards and challenging learning activities for students. Learning blended with technology can especially provide all possible sources of education. The technologies are not only going to act as technical add-ons to the system but also they can try their best to improve the quality of education. New technologies can provide meaningful learning experiences for all learners, especially those who are in the developing countries. Educational centers that capitalize on the technological and educational reforms will help students to develop higher order skills and to function effectively in the world beyond the classroom. Achieving such fundamental change, however, requires a transformation of not only the underlying pedagogy but also the kinds of technology applications typically used in classrooms serving at-risk students. The vision of classrooms structured around student involvement in challenging, long-term projects and focused on meaningful, engaged learning is important for all students. Yet such a change in practice would be especially dramatic for those students who have been characterized as economically disadvantaged or at risk. Traditionally, schools have had lower expectations for such students. Teachers have emphasized the acquisition of basic skills for at-risk students, often in special pullout programs or in lower level tracks. </jats:p

    SORLA-Dependent and -Independent Functions for PACS1 in Control of Amyloidogenic Processes

    No full text
    Sorting-related receptor with A-type repeats (SORLA) is a sorting receptor for the amyloid precursor protein (APP) that prevents breakdown of APP into Aβ peptides, a hallmark of Alzheimer's disease (AD). Several cytosolic adaptors have been shown to interact with the cytoplasmic domain of SORLA, thereby controlling intracellular routing of SORLA/APP complexes in cell lines. However, the relevance of adaptor-mediated sorting of SORLA for amyloidogenic processes in vivo remained unexplored. We focused on the interaction of SORLA with phosphofurin acidic cluster sorting protein 1 (PACS1), an adaptor that shuttles proteins between the trans-Golgi network (TGN) and endosomes. By studying PACS1 knockdown in neuronal cell lines and investigating transgenic mice expressing a PACS1-binding-defective mutant form of SORLA, we found that disruption of SORLA and PACS1 interaction results in the inability of SORLA/APP complexes to sort to the TGN in neurons and in increased APP processing in the brain. Loss of PACS1 also impairs the proper expression of the cation-independent mannose 6-phosphate receptor and its target cathepsin B, a protease that breaks down Aβ. Thus, our data identified the importance of PACS1-dependent protein sorting for amyloidogenic-burden control via both SORLA-dependent and SORLA-independent mechanisms

    Extracellular cystatin SN and cathepsin B prevent cellular senescence by inhibiting abnormal glycogen accumulation

    No full text
    Cystatin SN (CST1), a known inhibitor of cathepsin B (Cat B), has important roles in tumor development. Paradoxically, Cat B is a member of the cysteine cathepsin family that acts in cellular processes, such as tumor development and invasion. However, the relationship between CST1 and Cat B, and their roles in tumor development are poorly understood. In this study, we observed that the knockdown of CST1 induced the activity of senescence-associated β-galactosidase, a marker of cellular senescence, and expression of senescence-associated secretory phenotype genes, including interleukin-6 and chemokine (C-C motif) ligand 20, in MDA-MB-231 and SW480 cancer cells. Furthermore, CST1 knockdown decreased extracellular Cat B activity, and direct Cat B inhibition, using specific inhibitors or shCat B, induced cellular senescence. Reconstitution of CST1 restored Cat B activity and inhibited cellular senescence in CST1 knockdown cells. CST1 knockdown or Cat B inhibition increased glycogen synthase (GS) kinase 3β phosphorylation at serine 9, resulting in the activation of GS and the induction of glycogen accumulation associated with cellular senescence. Importantly, CST1 knockdown suppressed cancer cell proliferation, soft agar colony growth and tumor growth in a xenograft model. These results indicate that CST1-mediated extracellular Cat B activity enhances tumor development by preventing cellular senescence. Our findings suggest that antagonists of CST1 or inhibitors of Cat B are potential anticancer agents. ⓒ The Author(s) 2017.
    corecore