1,342 research outputs found
Nonconventional screening of the Coulomb interaction in FexOy clusters: An ab-initio study
From microscopic point-dipole model calculations of the screening of the
Coulomb interaction in non-polar systems by polarizable atoms, it is known that
screening strongly depends on dimensionality. For example, in one dimensional
systems the short range interaction is screened, while the long range
interaction is anti-screened. This anti-screening is also observed in some zero
dimensional structures, i.e. molecular systems. By means of ab-initio
calculations in conjunction with the random-phase approximation (RPA) within
the FLAPW method we study screening of the Coulomb interaction in FexOy
clusters. For completeness these results are compared with their bulk
counterpart magnetite. It appears that the onsite Coulomb interaction is very
well screened both in the clusters and bulk. On the other hand for the
intersite Coulomb interaction the important observation is made that it is
almost contant throughout the clusters, while for the bulk it is almost
completely screened. More precisely and interestingly, in the clusters
anti-screening is observed by means of ab-initio calculations
Correlation effects and orbital magnetism of Co clusters
Recent experiments on isolated Co clusters have shown huge orbital magnetic
moments in comparison with their bulk and surface counterparts. These clusters
hence provide the unique possibility to study the evolution of the orbital
magnetic moment with respect to the cluster size and how competing interactions
contribute to the quenching of orbital magnetism. We investigate here different
theoretical methods to calculate the spin and orbital moments of Co clusters,
and assess the performances of the methods in comparison with experiments. It
is shown that density functional theory in conventional local density or
generalized gradient approximations, or even with a hybrid functional, severely
underestimates the orbital moment. As natural extensions/corrections we
considered the orbital polarization correction, the LDA+U approximation as well
as the LDA+DMFT method. Our theory shows that of the considered methods, only
the LDA+DMFT method provides orbital moments in agreement with experiment, thus
emphasizing the importance of dynamic correlations effects for determining
fundamental magnetic properties of magnets in the nano-size regime
Quantum effective potential, electron transport and conformons in biopolymers
In the Kirchhoff model of a biopolymer, conformation dynamics can be
described in terms of solitary waves, for certain special cross-section
asymmetries. Applying this to the problem of electron transport, we show that
the quantum effective potential arising due to the bends and twists of the
polymer enables us to formalize and quantify the concept of a {\it conformon}
that has been hypothesized in biology. Its connection to the soliton solution
of the cubic nonlinear Schr\"{o}dinger equation emerges in a natural fashion.Comment: to appear in J. Phys.
Inverse Scattering Transform for the Camassa-Holm equation
An Inverse Scattering Method is developed for the Camassa-Holm equation. As
an illustration of our approach the solutions corresponding to the
reflectionless potentials are explicitly constructed in terms of the scattering
data. The main difference with respect to the standard Inverse Scattering
Transform lies in the fact that we have a weighted spectral problem. We
therefore have to develop different asymptotic expansions.Comment: 17 pages, LaTe
Cation- and vacancy-ordering in Li_xCoO_2
Using a combination of first-principles total energies, a cluster expansion
technique, and Monte Carlo simulations, we have studied the Li/Co ordering in
LiCoO_2 and Li-vacancy/Co ordering in CoO_2. We find: (i) A ground state search
of the space of substitutional cation configurations yields the (layered) CuPt
structure as the lowest-energy state in the octahedral system LiCoO_2 (and
CoO_2), in agreement with the experimentally observed phase. (ii) Finite
temperature calculations predict that the solid-state order- disorder
transitions for LiCoO_2 and CoO_2 occur at temperatures (~5100 K and ~4400 K,
respectively) much higher than melting, thus making these transitions
experimentally inaccessible. (iii) The energy of the reaction E(LiCoO_2) -
E(CoO_2) - E(Li) gives the average battery voltage V of a Li_xCoO_2/Li cell.
Searching the space of configurations for large average voltages, we find that
CuPt (a monolayer superlattice) has a high voltage (V=3.78 V), but that
this could be increased by cation randomization (V=3.99 V), partial disordering
(V=3.86 V), or by forming a 2-layer Li_2Co_2O_4 superlattice along
(V=4.90 V).Comment: 12 Pages, RevTeX galley format, 5 figures embedded using epsf Phys.
Rev. B (in press, 1998
A Precision Measurement of pp Elastic Scattering Cross Sections at Intermediate Energies
We have measured differential cross sections for \pp elastic scattering with
internal fiber targets in the recirculating beam of the proton synchrotron
COSY. Measurements were made continuously during acceleration for projectile
kinetic energies between 0.23 and 2.59 GeV in the angular range deg. Details of the apparatus and the data analysis are
given and the resulting excitation functions and angular distributions
presented. The precision of each data point is typically better than 4%, and a
relative normalization uncertainty of only 2.5% within an excitation function
has been reached. The impact on phase shift analysis as well as upper bounds on
possible resonant contributions in lower partial waves are discussed.Comment: 23 pages 29 figure
High resolution study of the Lambda p final state interaction in the reaction p + p -> K+ + (Lambda p)
The reaction pp -> K+ + (Lambda p) was measured at Tp=1.953 GeV and Theta = 0
deg with a high missing mass resolution in order to study the Lambda p final
state interaction. The large final state enhancement near the Lambda p
threshold can be described using the standard Jost-function approach. The
singlet and triplet scattering lengths and effective ranges are deduced by
fitting simultaneously the Lambda p invariant mass spectrum and the total cross
section data of the free Lambda p scattering.Comment: submitted to Physics Letters B, 10 pages, 3 figure
Measurement of p + d -> 3He + eta in S(11) Resonance
We have measured the reaction p + d -> 3He + eta at a proton beam energy of
980 MeV, which is 88.5 MeV above threshold using the new ``germanium wall''
detector system. A missing--mass resolution of the detector system of 2.6% was
achieved. The angular distribution of the meson is forward peaked. We found a
total cross section of (573 +- 83(stat.) +- 69(syst.))nb. The excitation
function for the present reaction is described by a Breit Wigner form with
parameters from photoproduction.Comment: 8 pages, 2 figures, corrected typos in heade
Meson Production in p+d Reactions
The production of neutral and charged pions as well as eta mesons is studied
in the Delta and N* resonance region, respectively. Heavy A=3 recoils were
measured with the GEM detector. The differential cross sections covering the
full angular range are compared with model calculations.Comment: 4 pages, latex, 4 figures, talk presented at the XVIIth European
Conference on Few-Body Problems in Physics, Evora, Portugal, September 2000;
to be published in Nucl. Phys.
- …
