597 research outputs found
Elastic effects of vacancies in strontium titanate: Short- and long-range strain fields, elastic dipole tensors, and chemical strain
We present a study of the local strain effects associated with vacancy
defects in strontium titanate and report the first calculations of elastic
dipole tensors and chemical strains for point defects in perovskites. The
combination of local and long-range results will enable determination of x-ray
scattering signatures that can be compared with experiments. We find that the
oxygen vacancy possesses a special property -- a highly anisotropic elastic
dipole tensor which almost vanishes upon averaging over all possible defect
orientations. Moreover, through direct comparison with experimental
measurements of chemical strain, we place constraints on the possible defects
present in oxygen-poor strontium titanate and introduce a conjecture regarding
the nature of the predominant defect in strontium-poor stoichiometries in
samples grown via pulsed laser deposition. Finally, during the review process,
we learned of recent experimental data, from strontium titanate films deposited
via molecular-beam epitaxy, that show good agreement with our calculated value
of the chemical strain associated with strontium vacancies.Comment: 14 pages, 11 figures, 4 table
The Evolution of Family Level Sales Forecasts into Product Level Forecasts
The Evolution of Family Level Sales Forecasts into Product Level Forecast
Joint density-functional theory for electronic structure of solvated systems
We introduce a new form of density functional theory for the {\em ab initio}
description of electronic systems in contact with a molecular liquid
environment. This theory rigorously joins an electron density-functional for
the electrons of a solute with a classical density-functional theory for the
liquid into a single variational principle for the free energy of the combined
system. A simple approximate functional predicts, without any fitting of
parameters to solvation data, solvation energies as well as state-of-the-art
quantum-chemical cavity approaches, which require such fitting.Comment: Fixed typos and minor updates to tex
A micro electromagnetic generator for vibration energy harvesting
Vibration energy harvesting is receiving a considerable amount of interest as a means for powering wireless sensor nodes. This paper presents a small (component volume 0.1 cm3, practical volume 0.15 cm3) electromagnetic generator utilizing discrete components and optimized for a low ambient vibration level based upon real application data. The generator uses four magnets arranged on an etched cantilever with a wound coil located within the moving magnetic field. Magnet size and coil properties were optimized, with the final device producing 46 µW in a resistive load of 4 k? from just 0.59 m s-2 acceleration levels at its resonant frequency of 52 Hz. A voltage of 428 mVrms was obtained from the generator with a 2300 turn coil which has proved sufficient for subsequent rectification and voltage step-up circuitry. The generator delivers 30% of the power supplied from the environment to useful electrical power in the load. This generator compares very favourably with other demonstrated examples in the literature, both in terms of normalized power density and efficiency
Strong damping of phononic heat current by magnetic excitations in SrCu_2(BO_3)_2
Measurements of the thermal conductivity as a function of temperature and
magnetic field in the 2D dimer spin system SrCu(BO) are presented.
In zero magnetic field the thermal conductivity along and perpendicular to the
magnetic planes shows a pronounced double-peak structure as a function of
temperature. The low-temperature maximum is drastically suppressed with
increasing magnetic field. Our quantitative analysis reveals that the heat
current is due to phonons and that the double-peak structure arises from
pronounced resonant scattering of phonons by magnetic excitations.Comment: a bit more than 4 pages, 2 figures included; minor changes to improve
the clarity of the presentatio
The Influence of Dopamine on Brain Function in Healthy Older Adults
Dopamine plays a crucial role in reward processing, motor control, and cognitive functions. Levels of dopamine can vary based on sex and age. Men have higher dopamine release in the ventral striatum compared to women, potentially having effect on reward, though further research is needed to understand these differences. Dopamine levels have been shown to naturally decline with age. Reductions can be seen in both dopamine synthesis and receptor availability. This may impact motivation, movement, and cognitive flexibility. Estrogen also has been shown to influence dopamine synthesis, receptor availability, and degradation. During menopause, estrogen levels sharply decline, a dopamine connection may contribute to cognitive and emotional symptoms reported during the menopause transition. This study examined the relationship between dopamine levels, sex, and aging using T2* maps. T2* maps are a measure inversely related to iron deposition, used as a proxy measure for dopamine. Iron is colocalized with dopamine in the brain. Unexpectedly, no significant relationship was found between T2* and age or sex. This suggested that individual variability such as genetic factors and lifestyle influences may contribute to dopamine regulation. Limitations in this work influenced findings, such as averaging the entire brain for T2* values rather than region-specific analyses. Further research should include region specific analyses and estrogen level measurements to better understand how dopamine relates to aging and sex
First-Principles Calculation of the Superconducting Transition in MgB2 within the Anisotropic Eliashberg Formalism
We present a study of the superconducting transition in MgB2 using the
ab-initio pseudopotential density functional method and the fully anisotropic
Eliashberg equation. Our study shows that the anisotropic Eliashberg equation,
constructed with ab-initio calculated momentum-dependent electron-phonon
interaction and anharmonic phonon frequencies, yields an average
electron-phonon coupling constant lambda = 0.61, a transition temperature Tc =
39 K, and a boron isotope-effect exponent alphaB = 0.31 with a reasonable
assumption of mu* = 0.12. The calculated values for Tc, lambda, and alphaB are
in excellent agreement with transport, specific heat, and isotope effect
measurements respectively. The individual values of the electron-phonon
coupling lambda(k,k') on the various pieces of the Fermi surface however vary
from 0.1 to 2.5. The observed Tc is a result of both the raising effect of
anisotropy in the electron-phonon couplings and the lowering effect of
anharmonicity in the relevant phonon modes.Comment: 4 pages, 3 figures, 1 tabl
Power processing circuits for electromagnetic, electrostatic and piezoelectric inertial energy scavengers
Accepted versio
- …
