335 research outputs found

    AGN Feedback and Bimodality in Cluster Core Entropy

    Full text link
    We investigate a series of steady-state models of galaxy clusters, in which the hot intracluster gas is efficiently heated by active galactic nucleus (AGN) feedback and thermal conduction, and in which the mass accretion rates are highly reduced compared to those predicted by the standard cooling flow models. We perform a global Lagrangian stability analysis. We show for the first time that the global radial instability in cool core clusters can be suppressed by the AGN feedback mechanism, provided that the feedback efficiency exceeds a critical lower limit. Furthermore, our analysis naturally shows that the clusters can exist in two distinct forms. Globally stable clusters are expected to have either: 1) cool cores stabilized by both AGN feedback and conduction, or 2) non-cool cores stabilized primarily by conduction. Intermediate central temperatures typically lead to globally unstable solutions. This bimodality is consistent with the recently observed anticorrelation between the flatness of the temperature profiles and the AGN activity (Dunn & Fabian 2008) and the observation by Rafferty et al. (2008) that the shorter central cooling times tend to correspond to significantly younger AGN X-ray cavities.Comment: 4 pages, to appear in the proceedings of "The Monster's Fiery Breath: Feedback in Galaxies, Groups, and Clusters", Eds. Sebastian Heinz, Eric Wilcots (AIP conference series

    The Efficiency of Magnetic Field Amplification at Shocks by Turbulence

    Full text link
    Turbulent dynamo field amplification has often been invoked to explain the strong field strengths in thin rims in supernova shocks (100μ\sim 100 \, \muG) and in radio relics in galaxy clusters (μ\sim \muG). We present high resolution MHD simulations of the interaction between pre-shock turbulence, clumping and shocks, to quantify the conditions under which turbulent dynamo amplification can be significant. We demonstrate numerically converged field amplification which scales with Alfv\'en Mach number, B/B0MAB/B_0 \propto {\mathcal M}_{\rm A}, up to MA150{\mathcal M}_{\rm A} \sim 150. This implies that the post-shock field strength is relatively independent of the seed field. Amplification is dominated by compression at low MA{\mathcal M}_{\rm A}, and stretching (turbulent amplification) at high MA{\mathcal M}_{\rm A}. For high MA\mathcal{M}_{\rm A}, the BB-field grows exponentially and saturates at equipartition with turbulence, while the vorticity jumps sharply at the shock and subsequently decays; the resulting field is orientated predominately along the shock normal (an effect only apparent in 3D and not 2D). This agrees with the radial field bias seen in supernova remnants. By contrast, for low MA\mathcal{M}_{\rm A}, field amplification is mostly compressional, relatively modest, and results in a predominantly perpendicular field. The latter is consistent with the polarization seen in radio relics. Our results are relatively robust to the assumed level of gas clumping. Our results imply that the turbulent dynamo may be important for supernovae, but is only consistent with the field strength, and not geometry, for cluster radio relics. For the latter, this implies strong pre-existing BB-fields in the ambient cluster outskirts.Comment: 15 pages, 11 figures, published version on MNRA

    Shock heating by FR I radio sources in galaxy clusters

    Full text link
    Feedback by active galactic nuclei (AGN) is frequently invoked to explain the cut-off of the galaxy luminosity function at the bright end and the absence of cooling flows in galaxy clusters. Meanwhile, there are recent observations of shock fronts around radio-loud AGN. Using realistic 3D simulations of jets in a galaxy cluster, we address the question what fraction of the energy of active galactic nuclei is dissipated in shocks. We find that weak shocks that encompass the AGN have Mach numbers of 1.1-1.2 and dissipate at least 2% of the mechanical luminosity of the AGN. In a realistic cluster medium, even a continuous jet can lead to multiple shock structures, which may lead to an overestimate of the AGN duty cycles inferred from the spatial distribution of waves.Comment: accepted by MNRAS Letter

    Entropy "floor" and effervescent heating of intracluster gas

    Full text link
    Recent X-ray observations of clusters of galaxies have shown that the entropy of the intracluster medium (ICM), even at radii as large as half the virial radius, is higher than that expected from gravitational processes alone. This is thought to be the result of nongravitational processes influencing the physical state of the ICM. In this paper, we investigate whether heating by a central AGN can explain the distribution of excess entropy as a function of radius. The AGN is assumed to inject buoyant bubbles into the ICM, which heat the ambient medium by doing pdV work as they rise and expand. Several authors have suggested that this "effervescent heating" mechanism could allow the central regions of clusters to avoid the ``cooling catastrophe''. Here we study the effect of effervescent heating at large radii. Our calculations show that such a heating mechanism is able to solve the entropy problem. The only free parameters of the model are the time-averaged luminosity and the AGN lifetime. The results are mainly sensitive to the total energy injected into the cluster. Our model predicts that the total energy injected by AGN should be roughly proportional to the cluster mass. The expected correlation is consistent with a linear relation between the mass of the central black hole(s) and the mass of the cluster, which is reminiscent of the Magorrian relation between the black hole and bulge mass.Comment: accepted for Ap

    Chaotic cold accretion onto black holes

    Full text link
    Using 3D AMR simulations, linking the 50 kpc to the sub-pc scales over the course of 40 Myr, we systematically relax the classic Bondi assumptions in a typical galaxy hosting a SMBH. In the realistic scenario, where the hot gas is cooling, while heated and stirred on large scales, the accretion rate is boosted up to two orders of magnitude compared with the Bondi prediction. The cause is the nonlinear growth of thermal instabilities, leading to the condensation of cold clouds and filaments when t_cool/t_ff < 10. Subsonic turbulence of just over 100 km/s (M > 0.2) induces the formation of thermal instabilities, even in the absence of heating, while in the transonic regime turbulent dissipation inhibits their growth (t_turb/t_cool < 1). When heating restores global thermodynamic balance, the formation of the multiphase medium is violent, and the mode of accretion is fully cold and chaotic. The recurrent collisions and tidal forces between clouds, filaments and the central clumpy torus promote angular momentum cancellation, hence boosting accretion. On sub-pc scales the clouds are channelled to the very centre via a funnel. A good approximation to the accretion rate is the cooling rate, which can be used as subgrid model, physically reproducing the boost factor of 100 required by cosmological simulations, while accounting for fluctuations. Chaotic cold accretion may be common in many systems, such as hot galactic halos, groups, and clusters, generating high-velocity clouds and strong variations of the AGN luminosity and jet orientation. In this mode, the black hole can quickly react to the state of the entire host galaxy, leading to efficient self-regulated AGN feedback and the symbiotic Magorrian relation. During phases of overheating, the hot mode becomes the single channel of accretion (with a different cuspy temperature profile), though strongly suppressed by turbulence.Comment: Accepted by MNRAS: added comments and references. Your feedback is welcom

    Impact of tangled magnetic fields on AGN-blown bubbles

    Full text link
    There is growing consensus that feedback from AGN is the main mechanism responsible for stopping cooling flows in clusters of galaxies. AGN are known to inflate buoyant bubbles that supply mechanical power to the intracluster gas (ICM). High Reynolds number hydrodynamical simulations show that such bubbles get entirely disrupted within 100 Myr, as they rise in cluster atmospheres, which is contrary to observations. This artificial mixing has consequences for models trying to quantify the amount of heating and star formation in cool core clusters of galaxies. It has been suggested that magnetic fields can stabilize bubbles against disruption. We perform MHD simulations of fossil bubbles in the presence of tangled magnetic fields using the high order PENCIL code. We focus on the physically-motivated case where thermal pressure dominates over magnetic pressure and consider randomly oriented fields with and without maximum helicity and a case where large scale external fields drape the bubble.We find that helicity has some stabilizing effect. However, unless the coherence length of magnetic fields exceeds the bubble size, the bubbles are quickly shredded. As observations of Hydra A suggest that lengthscale of magnetic fields may be smaller then typical bubble size, this may suggest that other mechanisms, such as viscosity, may be responsible for stabilizing the bubbles. However, since Faraday rotation observations of radio lobes do not constrain large scale ICM fields well if they are aligned with the bubble surface, the draping case may be a viable alternative solution to the problem. A generic feature found in our simulations is the formation of magnetic wakes where fields are ordered and amplified. We suggest that this effect could prevent evaporation by thermal conduction of cold Halpha filaments observed in the Perseus cluster.Comment: accepted for publication in MNRAS, (downgraded resolution figures, color printing recommended

    Cosmological MHD simulations of cluster formation with anisotropic thermal conduction

    Full text link
    (abridged) The ICM has been suggested to be buoyantly unstable in the presence of magnetic field and anisotropic thermal conduction. We perform first cosmological simulations of galaxy cluster formation that simultaneously include magnetic fields, radiative cooling and anisotropic thermal conduction. In isolated and idealized cluster models, the magnetothermal instability (MTI) tends to reorient the magnetic fields radially. Using cosmological simulations of the Santa Barbara cluster we detect radial bias in the velocity and magnetic fields. Such radial bias is consistent with either the inhomogeneous radial gas flows due to substructures or residual MTI-driven field rearangements that are expected even in the presence of turbulence. Although disentangling the two scenarios is challenging, we do not detect excess bias in the runs that include anisotropic thermal conduction. The anisotropy effect is potentially detectable via radio polarization measurements with LOFAR and SKA and future X-ray spectroscopic studies with the IXO. We demonstrate that radiative cooling boosts the amplification of the magnetic field by about two orders of magnitude beyond what is expected in the non-radiative cases. At z=0 the field is amplified by a factor of about 10^6 compared to the uniform magnetic field evolved due to the universal expansion alone. Interestingly, the runs that include both radiative cooling and anisotropic thermal conduction exhibit stronger magnetic field amplification than purely radiative runs at the off-center locations. In these runs, shallow temperature gradients away from the cluster center make the ICM neutrally buoyant. The ICM is more easily mixed in these regions and the winding up of the frozen-in magnetic field is more efficient resulting in stronger magnetic field amplification.Comment: submitted to ApJ, higher resolution figures available at: http://www.astro.lsa.umich.edu/~mateuszr

    AGN heating and dissipative processes in galaxy clusters

    Full text link
    Recent X-ray observations reveal growing evidence for heating by active galactic nuclei (AGN) in clusters and groups of galaxies. AGN outflows play a crucial role in explaining the riddle of cooling flows and the entropy problem in clusters. Here we study the effect of AGN on the intra-cluster medium in a cosmological simulation using the adaptive mesh refinement FLASH code. We pay particular attention to the effects of conductivity and viscosity on the dissipation of weak shocks generated by the AGN activity in a realistic galaxy cluster. Our 3D simulations demonstrate that both viscous and conductive dissipation play an important role in distributing the mechanical energy injected by the AGN, offsetting radiative cooling and injecting entropy to the gas. These processes are important even when the transport coefficients are at a level of 10% of the Spitzer value. Provided that both conductivity and viscosity are suppressed by a comparable amount, conductive dissipation is likely to dominate over viscous dissipation. Nevertheless, viscous effects may still affect the dynamics of the gas and contribute a significant amount of dissipation compared to radiative cooling. We also present synthetic Chandra observations. We show that the simulated buoyant bubbles inflated by the AGN, and weak shocks associated with them, are detectable with the Chandra observatory.Comment: accepted to ApJ, minor change

    Galaxy Motions, Turbulence and Conduction in Clusters of Galaxies

    Full text link
    Unopposed radiative cooling in clusters of galaxies results in excessive mass deposition rates. However, the cool cores of galaxy clusters are continuously heated by thermal conduction and turbulent heat diffusion due to minor mergers or the galaxies orbiting the cluster center. These processes can either reduce the energy requirements for AGN heating of cool cores, or they can prevent overcooling altogether. We perform 3D MHD simulations including field-aligned thermal conduction and self-gravitating particles to model this in detail. Turbulence is not confined to the wakes of galaxies but is instead volume-filling, due to the excitation of large-scale g-modes. We systematically probe the parameter space of galaxy masses and numbers. For a wide range of observationally motivated galaxy parameters, the magnetic field is randomized by stirring motions, restoring the conductive heat flow to the core. The cooling catastrophe either does not occur or it is sufficiently delayed to allow the cluster to experience a major merger that could reset conditions in the intracluster medium. Whilst dissipation of turbulent motions is negligible as a heat source, turbulent heat diffusion is extremely important; it predominates in the cluster center. However, thermal conduction becomes important at larger radii, and simulations without thermal conduction suffer a cooling catastrophe. Conduction is important both as a heat source and to reduce stabilizing buoyancy forces, enabling more efficient diffusion. Turbulence enables conduction, and conduction enables turbulence. In these simulations, the gas vorticity---which is a good indicator of trapped g-modes--increases with time. The vorticity growth is approximately mirrored by the growth of the magnetic field, which is amplified by turbulence.Comment: Submitted to MNRA

    AGN heating, thermal conduction and Sunyaev-Zeldovich effect in galaxy groups and clusters

    Full text link
    (abridged) We investigate in detail the role of active galactic nuclei on the physical state of the gas in galaxy groups and clusters, and the implications for anisotropy in the CMB from Sunyaev-Zeldovich effect. We include the effect of thermal conduction, and find that the resulting profiles of temperature and entropy are consistent with observations. Unlike previously proposed models, our model predicts that isentropic cores are not an inevitable consequence of preheating. The model also reproduces the observational trend for the density profiles to flatten in lower mass systems. We deduce the energy E_agn required to explain the entropy observations as a function of mass of groups and clusters M_cl and show that E_agn is proportional to M_cl^alpha with alpha~1.5. We demonstrate that the entropy measurements, in conjunction with our model, can be translated into constraints on the cluster--black hole mass relation. The inferred relation is nonlinear and has the form M_bh\propto M_cl^alpha. This scaling is an analog and extension of a similar relation between the black hole mass and the galactic halo mass that holds on smaller scales. We show that the central decrement of the CMB temperature is reduced due to the enhanced entropy of the ICM, and that the decrement predicted from the plausible range of energy input from the AGN is consistent with available data of SZ decrement. We show that AGN heating, combined with the observational constraints on entropy, leads to suppression of higher multipole moments in the angular power spectrum and we find that this effect is stronger than previously thought.Comment: accepted for publication in The Astrophysical Journa
    corecore