702 research outputs found

    Development of a PbWO4 Detector for Single-Shot Positron Annihilation Lifetime Spectroscopy at the GBAR Experiment

    Get PDF
    We have developed a PbWO4 (PWO) detector with a large dynamic range to measure the intensity of a positron beam and the absolute density of the ortho-positronium (o-Ps) cloud it creates. A simulation study shows that a setup based on such detectors may be used to determine the angular distribution of the emission and reflection of o-Ps to reduce part of the uncertainties of the measurement. These will allow to improve the precision in the measurement of the cross-section for the (anti)hydrogen formation by (anti)proton-positronium charge exchange and to optimize the yield of antihydrogen ion which is an essential parameter in the GBAR experiment

    Modelling of the effect of ELMs on fuel retention at the bulk W divertor of JET

    Get PDF
    Effect of ELMs on fuel retention at the bulk W target of JET ITER-Like Wall was studied with multi-scale calculations. Plasma input parameters were taken from ELMy H-mode plasma experiment. The energetic intra-ELM fuel particles get implanted and create near-surface defects up to depths of few tens of nm, which act as the main fuel trapping sites during ELMs. Clustering of implantation-induced vacancies were found to take place. The incoming flux of inter-ELM plasma particles increases the different filling levels of trapped fuel in defects. The temperature increase of the W target during the pulse increases the fuel detrapping rate. The inter-ELM fuel particle flux refills the partially emptied trapping sites and fills new sites. This leads to a competing effect on the retention and release rates of the implanted particles. At high temperatures the main retention appeared in larger vacancy clusters due to increased clustering rate

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Structure of Kα1,2 - And Kβ1,3 -emission x-ray spectra for Se, Y, and Zr

    Get PDF
    UID/FIS/04559/2020 UID/MULTI/04046/2020 Project No. PTDC/FIS-AQM/31969/20 Grant No. 2017/25/B/ST2/00901The Kα and Kβ x-ray spectra of Se, Y, and Zr were studied experimentally and theoretically in order to obtain information on the Kα1 line asymmetry and the spin doublet in Kβ1,3 diagram lines. Using a high-resolution antiparallel double-crystal x-ray spectrometer, we obtained the line shapes, that is, asymmetry index and natural linewidths. We found that the corrected full width at half maximum of the Kα1 and Kα2 lines as a function of Z is in good agreement with the data in the literature. Furthermore, satellite lines arising from shake-off appear in the low-energy side of the Kα1 and Kα2 lines in Se but, in Y and Zr, it was very difficult to identify the contribution of the shake process to the overall lines. The Kβ1,3 natural linewidth of these elements was also corrected using the appropriate instrumental function for this type of x-ray spectrometer, and the spin doublet energies were obtained from the peak positions. The corrected full width at half maximum (FWHM) of the Kβ1 x-ray lines increases linearly with Z, but this tendency was found to be, in general, not linear for Kβ3 x-ray lines. This behavior may be due to the existence of satellite lines originated from shake processes. Simulated line profiles, obtained using the multiconfiguration Dirac-Fock formalism, accounting for radiative and radiationless transitions and shake-off processes, show a very good agreement with the high-resolution experimental spectra.publishersversionpublishe

    Isomer depletion as experimental evidence of nuclear excitation by electron capture

    Get PDF
    The atomic nucleus and its electrons are often thought of as independent systems that are held together in the atom by their mutual attraction. Their interaction, however, leads to other important effects, such as providing an additional decay mode for excited nuclear states, whereby the nucleus releases energy by ejecting an atomic electron instead of by emitting a 3-ray. This 'internal conversion' has been known for about a hundred years and can be used to study nuclei and their interaction with their electrons. In the inverse process - nuclear excitation by electron capture (NEEC) - a free electron is captured into an atomic vacancy and can excite the nucleus to a higher-energy state, provided that the kinetic energy of the free electron plus the magnitude of its binding energy once captured matches the nuclear energy difference between the two states. NEEC was predicted in 1976 and has not hitherto been observed. Here we report evidence of NEEC in molybdenum-93 and determine the probability and cross-section for the process in a beam-based experimental scenario. Our results provide a standard for the assessment of theoretical models relevant to NEEC, which predict cross-sections that span many orders of magnitude. The greatest practical effect of the NEEC process may be on the survival of nuclei in stellar environments, in which it could excite isomers (that is, long-lived nuclear states) to shorter-lived states. Such excitations may reduce the abundance of the isotope after its production. This is an example of 'isomer depletion', which has been investigated previously through other reactions, but is used here to obtain evidence for NEEC

    Reply to: Possible overestimation of isomer depletion due to contamination

    Get PDF
    We appreciate the interest of Guo et al., the points that they raise, and the opportunity that we have to provide additional details that are not included in ref. This allows us to strengthen our experimental case while, in parallel, recent developments are improving our theoretical understanding of nuclear excitation by electron capture (NEEC), such as the exploration of a substantial increase in predicted NEEC probability when considering capture by an ion in an excited state (S. Gargiulo et al., submitted) or the impact of the momentum distribution of target electrons (J.R. et al., submitted). In the accompanying Comment, Guo et al. focus on whether potential background contributions were underestimated in our analysis. As discussed below, these concerns are mostly unwarranted; aside from a small systematic uncertainty that could possibly slightly reduce our reported NEEC excitation probability of Pexc = 0.010(3), our original conclusions still stand

    Testing a prediction model for the H-mode density pedestal against JET-ILW pedestals

    Get PDF
    The neutral ionisation model proposed by Groebner et al (2002 Phys. Plasmas 9 2134) to determine the plasma density profile in the H-mode pedestal, is extended to include charge exchange processes in the pedestal stimulated by the ideas of Mahdavi et al (2003 Phys. Plasmas 10 3984). The model is then tested against JET H-mode pedestal data, both in a 'standalone' version using experimental temperature profiles and also by incorporating it in the Europed version of EPED. The model is able to predict the density pedestal over a wide range of conditions with good accuracy. It is also able to predict the experimentally observed isotope effect on the density pedestal that eludes simpler neutral ionization models

    Interpretative and predictive modelling of Joint European Torus collisionality scans

    Get PDF
    Transport modelling of Joint European Torus (JET) dimensionless collisionality scaling experiments in various operational scenarios is presented. Interpretative simulations at a fixed radial position are combined with predictive JETTO simulations of temperatures and densities, using the TGLF transport model. The model includes electromagnetic effects and collisions as well as □(→┬E ) X □(→┬B ) shear in Miller geometry. Focus is on particle transport and the role of the neutral beam injection (NBI) particle source for the density peaking. The experimental 3-point collisionality scans include L-mode, and H-mode (D and H and higher beta D plasma) plasmas in a total of 12 discharges. Experimental results presented in (Tala et al 2017 44th EPS Conf.) indicate that for the H-mode scans, the NBI particle source plays an important role for the density peaking, whereas for the L-mode scan, the influence of the particle source is small. In general, both the interpretative and predictive transport simulations support the experimental conclusions on the role of the NBI particle source for the 12 JET discharges
    corecore