931 research outputs found
Detecting Determinacy in Prolog Programs: 22nd International Conference, ICLP 2006, Seattle, WA, USA, August 17-20, 2006. Proceedings
In program development it is useful to know that a call to a Prolog program will not inadvertently leave a choice-point on the stack. Determinacy inference has been proposed for solving this problem yet the analysis was found to be wanting in that it could not infer determinacy conditions for programs that contained cuts or applied certain tests to select a clause. This paper shows how to remedy these serious deficiencies. It also addresses the problem of identifying those predicates which can be rewritten in a more deterministic fashion. To this end, a radically new form of determinacy inference is introduced, which is founded on ideas in ccp, that is capable of reasoning about the way bindings imposed by a rightmost goal can make a leftmost goal deterministic
A pilot study comparing the metabolic profiles of elite-level athletes from different sporting disciplines
Background: The outstanding performance of an elite athlete might be associated with changes in their blood metabolic profile. The aims of this study were to compare the blood metabolic profiles between moderate- and high-power and endurance elite athletes and to identify the potential metabolic pathways underlying these differences. Methods: Metabolic profiling of serum samples from 191 elite athletes from different sports disciplines (121 high- and 70 moderate-endurance athletes, including 44 high- and 144 moderate-power athletes), who participated in national or international sports events and tested negative for doping abuse at anti-doping laboratories, was performed using non-targeted metabolomics-based mass spectroscopy combined with ultrahigh-performance liquid chromatography. Multivariate analysis was conducted using orthogonal partial least squares discriminant analysis. Differences in metabolic levels between high- and moderate-power and endurance sports were assessed by univariate linear models. Results: Out of 743 analyzed metabolites, gamma-glutamyl amino acids were significantly reduced in both high-power and high-endurance athletes compared to moderate counterparts, indicating active glutathione cycle. High-endurance athletes exhibited significant increases in the levels of several sex hormone steroids involved in testosterone and progesterone synthesis, but decreases in diacylglycerols and ecosanoids. High-power athletes had increased levels of phospholipids and xanthine metabolites compared to moderate-power counterparts. Conclusions: This pilot data provides evidence that high-power and high-endurance athletes exhibit a distinct metabolic profile that reflects steroid biosynthesis, fatty acid metabolism, oxidative stress, and energy-related metabolites. Replication studies are warranted to confirm differences in the metabolic profiles associated with athletes’ elite performance in independent data sets, aiming ultimately for deeper understanding of the underlying biochemical processes that could be utilized as biomarkers with potential therapeutic implications
Effects of acute fatigue on the volitional and magnetically-evoked electromechanical delay of the knee flexors in males and females
Neuromuscular performance capabilities, including those measured by evoked responses, may be adversely affected by fatigue; however, the capability of the neuromuscular system to initiate muscle force rapidly under these circumstances is yet to be established. Sex-differences in the acute responses of neuromuscular performance to exercise stress may be linked to evidence that females are much more vulnerable to ACL injury than males. Optimal functioning of the knee flexors is paramount to the dynamic stabilisation of the knee joint, therefore the aim of this investigation was to examine the effects of acute maximal intensity fatiguing exercise on the voluntary and magnetically-evoked electromechanical delay in the knee flexors of males and females. Knee flexor volitional and magnetically-evoked neuromuscular performance was assessed in seven male and nine females prior to and immediately after: (i) an intervention condition comprising a fatigue trial of 30-seconds maximal static exercise of the knee flexors, (ii) a control condition consisting of no exercise. The results showed that the fatigue intervention was associated with a substantive reduction in volitional peak force (PFV) that was greater in males compared to females (15.0%, 10.2%, respectively, p < 0.01) and impairment to volitional electromechanical delay (EMDV) in females exclusively (19.3%, p < 0.05). Similar improvements in magnetically-evoked electromechanical delay in males and females following fatigue (21%, p < 0.001), however, may suggest a vital facilitatory mechanism to overcome the effects of impaired voluntary capabilities, and a faster neuromuscular response that can be deployed during critical times to protect the joint system
Some strategic national initiatives for the Swedish education in the geodata field
Ponencias, comunicaciones y pósters presentados en el 17th AGILE Conference on Geographic Information Science
"Connecting a Digital Europe through Location and Place", celebrado en la Universitat Jaume I del 3 al 6 de junio de 2014.This paper describes national cooperation in Sweden launched by its universities and authorities, aimed at improving geodata education.
These initiatives have been focused upon providing common access to geodata, the production of teaching materials in Swedish and
organizing annual meetings for teachers. We argue that this type of cooperation is vital to providing high quality education for a poorly
recognized subject in a country with a relatively small population
Quantitative predictions on auxin-induced polar distribution of PIN proteins during vein formation in leaves
The dynamic patterning of the plant hormone auxin and its efflux facilitator
the PIN protein are the key regulator for the spatial and temporal organization
of plant development. In particular auxin induces the polar localization of its
own efflux facilitator. Due to this positive feedback auxin flow is directed
and patterns of auxin and PIN arise. During the earliest stage of vein
initiation in leaves auxin accumulates in a single cell in a rim of epidermal
cells from which it flows into the ground meristem tissue of the leaf blade.
There the localized auxin supply yields the successive polarization of PIN
distribution along a strand of cells. We model the auxin and PIN dynamics
within cells with a minimal canalization model. Solving the model analytically
we uncover an excitable polarization front that triggers a polar distribution
of PIN proteins in cells. As polarization fronts may extend to opposing
directions from their initiation site we suggest a possible resolution to the
puzzling occurrence of bipolar cells, such we offer an explanation for the
development of closed, looped veins. Employing non-linear analysis we identify
the role of the contributing microscopic processes during polarization.
Furthermore, we deduce quantitative predictions on polarization fronts
establishing a route to determine the up to now largely unknown kinetic rates
of auxin and PIN dynamics.Comment: 9 pages, 4 figures, supplemental information included, accepted for
publication in Eur. Phys. J.
Alignment between PIN1 Polarity and Microtubule Orientation in the Shoot Apical Meristem Reveals a Tight Coupling between Morphogenesis and Auxin Transport
Morphogenesis during multicellular development is regulated by intercellular signaling molecules as well as by the mechanical properties of individual cells. In particular, normal patterns of organogenesis in plants require coordination between growth direction and growth magnitude. How this is achieved remains unclear. Here we show that in Arabidopsis thaliana, auxin patterning and cellular growth are linked through a correlated pattern of auxin efflux carrier localization and cortical microtubule orientation. Our experiments reveal that both PIN1 localization and microtubule array orientation are likely to respond to a shared upstream regulator that appears to be biomechanical in nature. Lastly, through mathematical modeling we show that such a biophysical coupling could mediate the feedback loop between auxin and its transport that underlies plant phyllotaxis
Ensembles of climate change models for risk assessment of nuclear power plants
Climate change affects technical Systems, Structures and Infrastructures (SSIs), changing the environmental context for which SSI were originally designed. In order to prevent any risk growth beyond acceptable levels, the climate change effects must be accounted for into risk assessment models. Climate models can provide future climate data, such as air temperature and pressure. However, the reliability of climate models is a major concern due to the uncertainty in the temperature and pressure future projections. In this work, we consider five climate change models (individually unable to accurately provide historical recorded temperatures and, thus, also future projections), and ensemble their projections for integration in a probabilistic safety assessment, conditional on climate projections. As case study, we consider the Passive Containment Cooling System (PCCS) of two AP1000 Nuclear Power Plants (NPPs). Results provided by the different ensembles are compared. Finally, a risk-based classification approach is performed to identify critical future temperatures, which may lead to PCCS risks beyond acceptable levels
Specializing Interpreters using Offline Partial Deduction
We present the latest version of the Logen partial evaluation system for logic programs. In particular we present new binding-types, and show how they can be used to effectively specialise a wide variety of interpreters.We show how to achieve Jones-optimality in a systematic way for several interpreters. Finally, we present and specialise a non-trivial interpreter for a small functional programming language. Experimental results are also presented, highlighting that the Logen system can be a good basis for generating compilers for high-level languages
Metaphorical and interlingual translation in moving organizational practices across languages
Organizational scholars refer to translation as a metaphor in order to describe the transformation and movement of organizational practices across institutional contexts. However, they have paid relatively little attention to the challenges of moving organizational practices across language boundaries. In this conceptual paper, we theorize that when organizational practices move across contexts that differ not only in terms of institutions and cultures but also in terms of languages, translation becomes more than a metaphor; it turns into reverbalization of meaning in another language. We argue that the meeting of languages opens up a whole new arena for translator agency to unfold. Interlingual and metaphorical translation are two distinct but interrelated forms of translation that are mutually constitutive. We identify possible constellations between interlingual and metaphorical translation and illustrate agentic translation with published case examples. We also propose that interlingual translation is a key resource in the discursive constitution of multilingual organizations. This paper contributes to the stream of research in organization studies that has made translation a core aspect of its inquiry
- …
