611 research outputs found

    Phase diagram of a two-dimensional system with anomalous liquid properties

    Full text link
    Using Monte Carlo simulation techniques, we calculate the phase diagram for a square shoulder-square well potential in two dimensions that has been previously shown to exhibit liquid anomalies consistent with a metastable liquid-liquid critical point. We consider the liquid, gas and five crystal phases, and find that all the melting lines are first order, despite a small range of metastability. One melting line exhibits a temperature maximum, as well as a pressure maximum that implies inverse melting over a small range in pressure.Comment: 11 pages, 13 figure

    Non-Gaussian energy landscape of a simple model for strong network-forming liquids: accurate evaluation of the configurational entropy

    Full text link
    We present a numerical study of the statistical properties of the potential energy landscape of a simple model for strong network-forming liquids. The model is a system of spherical particles interacting through a square well potential, with an additional constraint that limits the maximum number of bonds, NmaxN_{\rm max}, per particle. Extensive simulations have been carried out as a function of temperature, packing fraction, and NmaxN_{\rm max}. The dynamics of this model are characterized by Arrhenius temperature dependence of the transport coefficients and by nearly exponential relaxation of dynamic correlators, i.e. features defining strong glass-forming liquids. This model has two important features: (i) landscape basins can be associated with bonding patterns; (ii) the configurational volume of the basin can be evaluated in a formally exact way, and numerically with arbitrary precision. These features allow us to evaluate the number of different topologies the bonding pattern can adopt. We find that the number of fully bonded configurations, i.e. configurations in which all particles are bonded to NmaxN_{\rm max} neighbors, is extensive, suggesting that the configurational entropy of the low temperature fluid is finite. We also evaluate the energy dependence of the configurational entropy close to the fully bonded state, and show that it follows a logarithmic functional form, differently from the quadratic dependence characterizing fragile liquids. We suggest that the presence of a discrete energy scale, provided by the particle bonds, and the intrinsic degeneracy of fully bonded disordered networks differentiates strong from fragile behavior.Comment: Final version. Journal of Chemical Physics 124, 204509 (2006

    The liquid-glass transition of silica

    Full text link
    We studied the liquid-glass transition of SiO2SiO_2 by means of replica theory, utilizing an effective pair potential which was proved to reproduce a few experimental features of silica. We found a finite critical temperature T0T_0, where the system undergoes a phase transition related to replica symmetry breaking, in a region where experiments do not show any transition. The possible sources of this discrepancy are discussed.Comment: 14 pages, 6 postscript figures. Revised version accepted for pubblication on J.Chem.Phy

    Energy landscape of a simple model for strong liquids

    Full text link
    We calculate the statistical properties of the energy landscape of a minimal model for strong network-forming liquids. Dynamics and thermodynamic properties of this model can be computed with arbitrary precision even at low temperatures. A degenerate disordered ground state and logarithmic statistics for the energy distribution are the landscape signatures of strong liquid behavior. Differences from fragile liquid properties are attributed to the presence of a discrete energy scale, provided by the particle bonds, and to the intrinsic degeneracy of topologically disordered networks.Comment: Revised versio

    Ocular transient receptor potential channel function in health and disease

    Get PDF
    Transient receptor potential (TRP) channels sense and transduce environmental stimuli into Ca2+ transients that in turn induce responses essential for cell function and adaptation. These non-selective channels with variable Ca2+ selectivity are grouped into seven different subfamilies containing 28 subtypes based on differences in amino acid sequence homology. Many of these subtypes are expressed in the eye on both neuronal and non-neuronal cells where they affect a host of stress-induced regulatory responses essential for normal vision maintenance. This article reviews our current knowledge about the expression, function and regulation of TRPs in different eye tissues. We also describe how under certain conditions TRP activation can induce responses that are maladaptive to ocular function. Furthermore, the possibility of an association between TRP mutations and disease is considered. These findings contribute to evidence suggesting that drug targeting TRP channels may be of therapeutic benefit in a clinical setting. We point out issues that must be more extensively addressed before it will be possible to decide with certainty that this is a realistic endeavor. Another possible upshot of future studies is that disease process progression can be better evaluated by profiling changes in tissue specific functional TRP subtype activity as well as their gene and protein expression

    Distributions of inherent structure energies during aging

    Full text link
    We perform extensive simulations of a binary mixture Lennard-Jones system subjected to a temperature jump in order to study the time evolution of fluctuations during aging. Analyzing data from 1500 different aging realizations, we calculate distributions of inherent structure energies for different aging times and contrast them with equilibrium. We find that the distributions initially become narrower and then widen as the system equilibrates. For deep quenches, fluctuations in the glassy system differ significantly from those observed in equilibrium. Simulation results are partially captured by theoretical predictions only when the final temperature is higher than the mode coupling temperature.Comment: 5 pages, 4 figure

    Mode-coupling theory predictions for a limited valency attractive square-well model

    Full text link
    Recently we have studied, using numerical simulations, a limited valency model, i.e. an attractive square well model with a constraint on the maximum number of bonded neighbors. Studying a large region of temperatures TT and packing fractions ϕ\phi, we have estimated the location of the liquid-gas phase separation spinodal and the loci of dynamic arrest, where the system is trapped in a disordered non-ergodic state. Two distinct arrest lines for the system are present in the system: a {\it (repulsive) glass} line at high packing fraction, and a {\it gel} line at low ϕ\phi and TT. The former is essentially vertical (ϕ\phi-controlled), while the latter is rather horizontal (TT-controlled) in the (ϕT)(\phi-T) plane. We here complement the molecular dynamics results with mode coupling theory calculations, using the numerical structure factors as input. We find that the theory predicts a repulsive glass line -- in satisfactory agreement with the simulation results -- and an attractive glass line which appears to be unrelated to the gel line.Comment: 12 pages, 6 figures. To appear in J. Phys. Condens. Matter, special issue: "Topics in Application of Scattering Methods for Investigation of Structure and Dynamics of Soft Condensed Matter", Fiesole, November 200

    Relation Between the Widom line and the Strong-Fragile Dynamic Crossover in Systems with a Liquid-Liquid Phase Transition

    Full text link
    We investigate, for two water models displaying a liquid-liquid critical point, the relation between changes in dynamic and thermodynamic anomalies arising from the presence of the liquid-liquid critical point. We find a correlation between the dynamic fragility transition and the locus of specific heat maxima CPmaxC_P^{\rm max} (``Widom line'') emanating from the critical point. Our findings are consistent with a possible relation between the previously hypothesized liquid-liquid phase transition and the transition in the dynamics recently observed in neutron scattering experiments on confined water. More generally, we argue that this connection between CPmaxC_P^{\rm max} and dynamic crossover is not limited to the case of water, a hydrogen bond network forming liquid, but is a more general feature of crossing the Widom line. Specifically, we also study the Jagla potential, a spherically-symmetric two-scale potential known to possess a liquid-liquid critical point, in which the competition between two liquid structures is generated by repulsive and attractive ramp interactions.Comment: 6 pages and 5 figure

    Liquid-Liquid Phase Transition for an Attractive Isotropic Potential with Wide Repulsive Range

    Full text link
    Recent experimental and theoretical results have shown the existence of a liquid-liquid phase transition in isotropic systems, such as biological solutions and colloids, whose interaction can be represented via an effective potential with a repulsive soft-core and an attractive part. We investigate how the phase diagram of a schematic general isotropic system, interacting via a soft-core squared attractive potential, changes by varying the parameters of the potential. It has been shown that this potential has a phase diagram with a liquid-liquid phase transition in addition to the standard gas-liquid phase transition and that, for a short-range soft-core, the phase diagram resulting from molecular dynamics simulations can be interpreted through a modified van der Waals equation. Here we consider the case of soft-core ranges comparable with or larger than the hard-core diameter. Because an analysis using molecular dynamics simulations of such systems or potentials is too time-demanding, we adopt an integral equation approach in the hypernetted-chain approximation. Thus we can estimate how the temperature and density of both critical points depend on the potential's parameters for large soft-core ranges. The present results confirm and extend our previous analysis, showing that this potential has two fluid-fluid critical points that are well separated in temperature and in density only if there is a balance between the attractive and repulsive part of the potential. We find that for large soft-core ranges our results satisfy a simple relation between the potential's parameters
    corecore