124 research outputs found

    Characterization of different DLC and DLN electrodes for biosensor design

    No full text
    International audienceDiamond-Like Carbon and Carbon-Like Nanocomposite electrodes, novel materials in the field of biosensors, made with different ratio of sp3/sp2 carbon hybridization or doped with elements such as Ni, Si and W, were characterized electrochemically by cyclic voltammetry and by amperometric measurements towards hydrogen peroxide. SiCAr1 and SiCNi5% were chosen as sensitive transducers for elaboration of amperometric glucose biosensors. Immobilization of glucose oxidase was carried out by cross-linking with glutareldehyde. Measurements were made at a fixed potential + 1.0 V in 40 mM phosphate buffer pH 7.4. SiCAr1 seems to be more sensitive for glucose (0.6875 µA/mM) then SiCNi5% (0.3654 µA/mM). Detections limits were respectively 20 µM and 30 µM. Michaelis-Menten constants for the two electrodes were found around 3 mM. 48% and 79% of the original response for 0.5 mM glucose remained respectively for both electrodes after 10 days

    Insights from telesurgery expert conference on recent clinical experience and current status of remote surgery

    Get PDF
    Remote surgery provides opportunity for enhanced surgical capabilities, wider healthcare reach, and potentially improved patient outcomes. The network reliability is the foundation of successful implementation of telesurgery. It relies on a robust, high-speed communication network, with ultra-low latency. Significant lag has been shown to endanger precision and safety. Furthermore, the full-fledged adoption of telerobotics demands careful consideration of ethical challenges too. A deep insight into these issues has been investigated during the first Telesurgery Consensus Conference that took place in Orlando, Florida, USA, on the 3rd and 4th of February, 2024. During the Conference, the state of the art of remote surgery has been reported from robotic systems displaying telesurgery potential. The Hinotori, a robotic-assisted surgery platform developed by Medicaroid, experienced remote surgery as pre-clinical testing only; the Edge Medical Company, Shenzen, China, reported more than one hundred animal and 30 live human surgeries; the KanGuo reported human telesurgical cases performed with distances more than 3000 km; the Microport, China, collected more than 100 human operations at a distance up to 5000 km. Though, several issues—cybersecurity, data privacy, technical malfunctions — are yet to be addressed before a successful telesurgery implementation. Expanding the discussion to encompass ethical, financial, regulatory, and legal considerations is essential too. The Telesurgery collaborative community is working together to address and establish the best practices in the field

    Translational models for vascular cognitive impairment: a review including larger species.

    Get PDF
    BACKGROUND: Disease models are useful for prospective studies of pathology, identification of molecular and cellular mechanisms, pre-clinical testing of interventions, and validation of clinical biomarkers. Here, we review animal models relevant to vascular cognitive impairment (VCI). A synopsis of each model was initially presented by expert practitioners. Synopses were refined by the authors, and subsequently by the scientific committee of a recent conference (International Conference on Vascular Dementia 2015). Only peer-reviewed sources were cited. METHODS: We included models that mimic VCI-related brain lesions (white matter hypoperfusion injury, focal ischaemia, cerebral amyloid angiopathy) or reproduce VCI risk factors (old age, hypertension, hyperhomocysteinemia, high-salt/high-fat diet) or reproduce genetic causes of VCI (CADASIL-causing Notch3 mutations). CONCLUSIONS: We concluded that (1) translational models may reflect a VCI-relevant pathological process, while not fully replicating a human disease spectrum; (2) rodent models of VCI are limited by paucity of white matter; and (3) further translational models, and improved cognitive testing instruments, are required

    Effect of imaging and catheter characteristics on clinical outcome for patients in the PRECISE study

    Get PDF
    The PRECISE study used convection enhanced delivery (CED) to infuse IL13-PE38QQR in patients with recurrent glioblastoma multiforme (GBM) and compared survival to Gliadel Wafers (GW). The objectives of this retrospective evaluation were to assess: (1) catheter positioning in relation to imaging features and (2) to examine the potential impact of catheter positioning, overall catheter placement and imaging features on long term clinical outcome in the PRECISE study. Catheter positioning and overall catheter placement were scored and used as a surrogate of adequate placement. Imaging studies obtained on day 43 and day 71 after resection were each retrospectively reviewed. Catheter positioning scores, catheter overall placement scores, local tumor control and imaging change scores were reviewed and correlated using Generalized Linear Mixed Models. Cox PH regression analysis was used to examine whether these imaging based variables predicted overall survival (OS) and progression free survival (PFS) after adjusting for age and KPS. Of 180 patients in the CED group, 20 patients did not undergo gross total resection. Of the remaining 160 patients only 53% of patients had fully conforming catheters in respect to overall placement and 51% had adequate catheter positioning scores. Better catheter positioning scores were not correlated with local tumor control (P = 0.61) or imaging change score (P = 0.86). OS and PFS were not correlated with catheter positioning score (OS: P = 0.53; PFS: P = 0.72 respectively), overall placement score (OS: P = 0.55; PFS: P = 0.35) or imaging changes on day 43 MRI (P = 0.88). Catheter positioning scores and overall catheter placement scores were not associated with clinical outcome in this large prospective trial

    AutoRadAI: a versatile artificial intelligence framework validated for detecting extracapsular extension in prostate cancer

    Full text link
    Preoperative identification of extracapsular extension (ECE) in prostate cancer (PCa) is crucial for effective treatment planning, as ECE presence significantly increases the risk of positive surgical margins and early biochemical recurrence following radical prostatectomy. AutoRadAI, an innovative artificial intelligence (AI) framework, was developed to address this clinical challenge while demonstrating broader potential for diverse medical imaging applications. The framework integrates T2-weighted MRI data with histopathology annotations, leveraging a dual convolutional neural network (multi-CNN) architecture. AutoRadAI comprises two key components: ProSliceFinder, which isolates prostate-relevant MRI slices, and ExCapNet, which evaluates ECE likelihood at the patient level. The system was trained and validated on a dataset of 1001 patients (510 ECE-positive, 491 ECE-negative cases). ProSliceFinder achieved an area under the ROC curve (AUC) of 0.92 (95% confidence interval [CI]: 0.89–0.94) for slice classification, while ExCapNet demonstrated robust performance with an AUC of 0.88 (95% CI: 0.83–0.92) for patient-level ECE detection. Additionally, AutoRadAI’s modular design ensures scalability and adaptability for applications beyond ECE detection. Validated through a user-friendly web-based interface for seamless clinical integration, AutoRadAI highlights the potential of AI-driven solutions in precision oncology. This framework improves diagnostic accuracy and streamlines preoperative staging, offering transformative applications in PCa management and beyond

    A type 1 immunity-restricted promoter of the IL-33 receptor gene directs antiviral T-cell responses

    Get PDF
    The pleiotropic alarmin interleukin-33 (IL-33) drives type 1, type 2 and regulatory T-cell responses via its receptor ST2. Subset-specific differences in ST2 expression intensity and dynamics suggest that transcriptional regulation is key in orchestrating the context-dependent activity of IL-33-ST2 signaling in T-cell immunity. Here, we identify a previously unrecognized alternative promoter in mice and humans that is located far upstream of the curated ST2-coding gene and drives ST2 expression in type 1 immunity. Mice lacking this promoter exhibit a selective loss of ST2 expression in type 1- but not type 2-biased T cells, resulting in impaired expansion of cytotoxic T cells (CTLs) and T-helper 1 cells upon viral infection. T-cell-intrinsic IL-33 signaling via type 1 promoter-driven ST2 is critical to generate a clonally diverse population of antiviral short-lived effector CTLs. Thus, lineage-specific alternative promoter usage directs alarmin responsiveness in T-cell subsets and offers opportunities for immune cell-specific targeting of the IL-33-ST2 axis in infections and inflammatory diseases

    Human serum-derived hydroxy long-chain fatty acids exhibit anti-inflammatory and anti-proliferative activity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Circulating levels of novel long-chain hydroxy fatty acids (called GTAs) were recently discovered in the serum of healthy subjects which were shown to be reduced in subjects with colorectal cancer (CRC), independent of tumor burden or disease stage. The levels of GTAs were subsequently observed to exhibit an inverse association with age in the general population. The current work investigates the biological activity of these fatty acids by evaluating the effects of enriched human serum extracts on cell growth and inflammation.</p> <p>Methods</p> <p>GTAs were extracted from commercially available bulk human serum and then chromatographically separated into enriched (GTA-positive) and depleted (GTA-negative) fractions. SW620, MCF7 and LPS stimulated RAW264.7 cells were treated with various concentrations of the GTA-positive and GTA-negative extracts, and the effects on cell growth and inflammation determined.</p> <p>Results</p> <p>Enriched fractions resulted in poly-ADP ribose polymerase (PARP) cleavage, suppression of NFκB, induction of IκBα, and reduction in NOS2 mRNA transcript levels. In RAW264.7 mouse macrophage cells, incubation with enriched fractions prior to treatment with LPS blocked the induction of several pro-inflammatory markers including nitric oxide, TNFα, IL-1β, NOS2 and COX2.</p> <p>Conclusions</p> <p>Our results show that human serum extracts enriched with endogenous long-chain hydroxy fatty acids possess anti-inflammatory and anti-proliferative activity. These findings support a hypothesis that the reduction of these metabolites with age may result in a compromised ability to defend against uncontrolled cell growth and inflammation, and could therefore represent a significant risk for the development of CRC.</p
    corecore