453 research outputs found
Magneto-elastic coupling and competing entropy changes in substituted CoMnSi metamagnets
We use neutron diffraction, magnetometry and low temperature heat capacity to
probe giant magneto-elastic coupling in CoMnSi-based antiferromagnets and to
establish the origin of the entropy change that occurs at the metamagnetic
transition in such compounds. We find a large difference between the electronic
density of states of the antiferromagnetic and high magnetisation states. The
magnetic field-induced entropy change is composed of this contribution and a
significant counteracting lattice component, deduced from the presence of
negative magnetostriction. In calculating the electronic entropy change, we
note the importance of using an accurate model of the electronic density of
states, which here varies rapidly close to the Fermi energy.Comment: 11 pages, 9 figures. Figures 4 and 6 were updated in v2 of this
preprint. In v3, figures 1 and 2 have been updated, while Table II and the
abstract have been extended. In v4, Table I has updated with relevant neutron
diffraction dat
Phase diagram and magnetocaloric effect of CoMnGe_{1-x}Sn_{x} alloys
We propose the phase diagram of a new pseudo-ternary compound,
CoMnGe_{1-x}Sn_{x}, in the range x less than or equal to 0.1. Our phase diagram
is a result of magnetic and calometric measurements. We demonstrate the
appearance of a hysteretic magnetostructural phase transition in the range
x=0.04 to x=0.055, similar to that observed in CoMnGe under hydrostatic
pressure. From magnetisation measurements, we show that the isothermal entropy
change associated with the magnetostructural transition can be as high as 4.5
J/(K kg) in a field of 1 Tesla. However, the large thermal hysteresis in this
transition (~20 K) will limit its straightforward use in a magnetocaloric
device.Comment: 12 pages, 5 figure
Electrical stimulation treatment for facial palsy after revision pleomorphic adenoma surgery.
Surgery for pleomorphic adenoma recurrence presents a significant risk of facial nerve damage that can result in facial weakness effecting patients' ability to communicate, mental health and self-image. We report two case studies that had marked facial weakness after resection of recurrent pleomorphic adenoma and their progress with electrical stimulation. Subjects received electrical stimulation twice daily for 24 weeks during which photographs of expressions, facial measurements and Sunnybrook scores were recorded. Both subjects recovered good facial function demonstrating Sunnybrook scores of 54 and 64 that improved to 88 and 96, respectively. Neither subjects demonstrated adverse effects of treatment. We conclude that electrical stimulation is a safe treatment and may improve facial palsy in patients after resection of recurrent pleomorphic adenoma. Larger studies would be difficult to pursue due to the low incidence of cases
Negative magnetocaloric effect from highly sensitive metamagnetism in CoMnSi_{1-x}Ge_{x}
We report a novel negative magnetocaloric effect in CoMnSi_{1-x}Ge_{x}
arising from a metamagnetic magnetoelastic transition. The effect is of
relevance to magnetic refrigeration over a wide range of temperature, including
room temperature. In addition we report a very high shift in the metamagnetic
transition temperature with applied magnetic field. This is driven by
competition between antiferromagnetic and ferromagnetic order which can be
readily tuned by applied pressure and compositional changes.Comment: 5 pages, 5 figures, REVTeX, submitted to Physical Revie
The Normal State Resistivity of Grain Boundaries in YBa2Cu3O7-delta
Using an optimized bridge geometry we have been able to make accurate
measurements of the properties of YBa2Cu3O7-delta grain boundaries above Tc.
The results show a strong dependence of the change of resistance with
temperature on grain boundary angle. Analysis of our results in the context of
band-bending allows us to estimate the height of the potential barrier present
at the grain boundary interface.Comment: 11 pages, 3 figure
Metallic Ferromagnetism in the Kondo Lattice
Metallic magnetism is both ancient and modern, occurring in such familiar
settings as the lodestone in compass needles and the hard drive in computers.
Surprisingly, a rigorous theoretical basis for metallic ferromagnetism is still
largely missing. The Stoner approach perturbatively treates Coulomb
interactions when the latter need to be large, while the Nagaoka approach
incorporates thermodynamically negligible electrons into a half-filled band.
Here, we show that the ferromagnetic order of the Kondo lattice is amenable to
an asymptotically exact analysis over a range of interaction parameters. In
this ferromagnetic phase, the conduction electrons and local moments are
strongly coupled but the Fermi surface does not enclose the latter (i.e. it is
small). Moreover, non-Fermi liquid behavior appears over a range of frequencies
and temperatures. Our results provide the basis to understand some
long-standing puzzles in the ferromagnetic heavy fermion metals, and raises the
prospect for a new class of ferromagnetic quantum phase transitions.Comment: 21 pages, 9 figures, including Supporting Informatio
Quantum and Topological Criticalities of Lifshitz Transition in Two-Dimensional Correlated Electron Systems
We study electron correlation effects on quantum criticalities of Lifshitz
transitions at zero temperature, using the mean-field theory based on a
preexisting symmetry-broken order, in two-dimensional systems. In the presence
of interactions, Lifshitz transitions may become discontinuous in contrast to
the continuous transition in the original proposal by Lifshitz for
noninteracting systems. We focus on the quantum criticality at the endpoint of
discontinuous Lifshitz transitions, which we call the marginal quantum critical
point. It shows remarkable criticalities arising from its nature as a
topological transition. At the point, for the canonical ensemble, the
susceptibility of the order parameter chi is found to diverge as ln 1/|delta
Delta| when the ``neck'' of the Fermi surface collapses at the van Hove
singularity. More remarkably, it diverges as 1/|delta Delta| when the
electron/hole pocket of the Fermi surface vanishes. Here delta Delta is the
amplitude of the mean field measured from the Lifshitz critical point. On the
other hand, for the grand canonical ensemble, the discontinuous transitions
appear as the electronic phase separation and the endpoint of the phase
separation is the marginal quantum critical point. Especially, when a pocket of
the Fermi surface vanishes, the uniform charge compressibility kappa diverges
as 1/|delta n|, instead of chi, where delta n is the electron density measured
from the critical point. Accordingly, Lifshitz transition induces large
fluctuations represented by diverging chi and/or kappa. Such fluctuations must
be involved in physics of competing orders and influence diversity of strong
correlation effects.Comment: 16 pages, 15 figures, to appear in Jounal of the Physical Society of
Japa
MARVEL Analysis of the Measured High-resolution Rovibronic Spectra of 48 Ti 16 O
Accurate, experimental rovibronic energy levels, with associated labels and uncertainties, are reported for 11 low-lying electronic states of the diatomic molecule, determined using the Marvel (Measured Active Rotational-Vibrational Energy Levels) algorithm. All levels are based on lines corresponding to critically reviewed and validated high-resolution experimental spectra taken from 24 literature sources. The transition data are in the 2–22,160 cm−1 region. Out of the 49,679 measured transitions, 43,885 are triplet–triplet, 5710 are singlet–singlet, and 84 are triplet–singlet transitions. A careful analysis of the resulting experimental spectroscopic network (SN) allows 48,590 transitions to be validated. The transitions determine 93 vibrational band origins of , including 71 triplet and 22 singlet ones. There are 276 (73) triplet–triplet (singlet–singlet) band-heads derived from Marvel experimental energies, 123(38) of which have never been assigned in low- or high-resolution experiments. The highest J value, where J stands for the total angular momentum, for which an energy level is validated is 163. The number of experimentally derived triplet and singlet rovibrational energy levels is 8682 and 1882, respectively. The lists of validated lines and levels for are deposited in the supporting information to this paper
Split transition in ferromagnetic superconductors
The split superconducting transition of up-spin and down-spin electrons on
the background of ferromagnetism is studied within the framework of a recent
model that describes the coexistence of ferromagnetism and superconductivity
induced by magnetic fluctuations. It is shown that one generically expects the
two transitions to be close to one another. This conclusion is discussed in
relation to experimental results on URhGe. It is also shown that the magnetic
Goldstone modes acquire an interesting structure in the superconducting phase,
which can be used as an experimental tool to probe the origin of the
superconductivity.Comment: REVTeX4, 15 pp, 7 eps fig
Impurity and strain effects on the magnetotransport of La1.85Sr0.15Cu(1-y)Zn(y)O4 films
The influence of zinc doping and strain related effects on the normal state
transport properties(the resistivity, the Hall angle and the orbital magneto-
resistance(OMR) is studied in a series of La1.85Sr0.15Cu(1-y)Zn(y)O4 films with
values of y between 0 and 0.12 and various degrees of strain induced by the
mismatch between the films and the substrate. The zinc doping affects only the
constant term in the temperature dependence of cotangent theta but the strain
affects both the slope and the constant term, while their ratio remains
constant.OMR is decreased by zinc doping but is unaffected by strain. The ratio
delta rho/(rho*tan^2 theta) is T-independent but decreases with impurity
doping. These results put strong constraints on theories of the normal state of
high- temperature superconductors
- …
