988 research outputs found
Thickness-dependent polarization of strained BiFeO3 films with constant tetragonality
We measure the remnant polarization of ferroelectric domains in BiFeO3 films
down to 3.6 nm using low energy electron and photoelectron emission microscopy.
The measured polarization decays strongly below a critical thickness of 5-7 nm
predicted by continuous medium theory whereas the tetragonal distortion does
not change. We resolve this apparent contradiction using first-principles-based
effective Hamiltonian calculations. In ultra thin films the energetics of near
open circuit electrical boundary conditions, i.e. unscreened depolarizing
field, drive the system through a phase transition from single out-of-plane
polarization to a nanoscale stripe domains, giving rise to an average remnant
polarization close to zero as measured by the electron microscopy whilst
maintaining the relatively large tetragonal distortion imposed by the non-zero
polarization state of each individual domain.Comment: main article: 5 pages, 6 figures; supplementary materials: 6 pages, 6
figures. Published in Phys. Rev. Let
Dipole matrix elements in helium in the first order shielding approximation
First order shielding approximation used to calculate off-diagonal matrix elements of dipole moment operator for heliu
Recommended from our members
A toolbox of nanobodies developed and validated for use as intrabodies and nanoscale immunolabels in mammalian brain neurons.
Nanobodies (nAbs) are small, minimal antibodies that have distinct attributes that make them uniquely suited for certain biomedical research, diagnostic and therapeutic applications. Prominent uses include as intracellular antibodies or intrabodies to bind and deliver cargo to specific proteins and/or subcellular sites within cells, and as nanoscale immunolabels for enhanced tissue penetration and improved spatial imaging resolution. Here, we report the generation and validation of nAbs against a set of proteins prominently expressed at specific subcellular sites in mammalian brain neurons. We describe a novel hierarchical validation pipeline to systematically evaluate nAbs isolated by phage display for effective and specific use as intrabodies and immunolabels in mammalian cells including brain neurons. These nAbs form part of a robust toolbox for targeting proteins with distinct and highly spatially-restricted subcellular localization in mammalian brain neurons, allowing for visualization and/or modulation of structure and function at those sites
Respons Pertumbuhan Bawang Merah (Allium Ascalonicum L.) Terhadap Pemberian Kompos Sampah Kota Dan Pupuk K
Shallot is an essential vegetable commodity in Indonesia. In north of Sumatera, shallot yield has decreased each year. Low production of shallot Indonesia one of them due to the application of cultivation technology. One way to increase the production of shallot is the improvement of cultivation techniques and organic fertilizer.The objective of the research was to determine the response of the growth and production of shallot on the application of municipal waste compost and K fertilizer. Research conducted at the Research Field of Faculty of Agriculture, University of Sumatera Utara, Medan on June to August 2015, using a randomized block design factorial with two factors: Municipal Solid Waste Compost (0, 7.5, 15, 22.5 t / ha) and K fertilizers (0, 75, 150 KCl / ha). Variables observed was the length of the plant , number of leaves and diameter of bulbs dry. The results showed that the urban waste compost not significantly effect on all variables observation, whereas the K fertilizer significantly effect of 3-5 MST plant length and diameter of bulbs dry. Interaction between urban waste compost 7,5 ton/ha and K fertilizer 75 kg KCl/ha is the best treatment to increase the growth and production of shallot
Theoretical study of the absorption spectra of the sodium dimer
Absorption of radiation from the sodium dimer molecular states correlating to
Na(3s)-Na(3s) is investigated theoretically. Vibrational bound and continuum
transitions from the singlet X Sigma-g+ state to the first excited singlet A
Sigma-u+ and singlet B Pi-u states and from the triplet a Sigma-u+ state to the
first excited triplet b Sigma-g+ and triplet c Pi-g states are studied
quantum-mechanically. Theoretical and experimental data are used to
characterize the molecular properties taking advantage of knowledge recently
obtained from ab initio calculations, spectroscopy, and ultra-cold atom
collision studies. The quantum-mechanical calculations are carried out for
temperatures in the range from 500 to 3000 K and are compared with previous
calculations and measurements where available.Comment: 19 pages, 8 figures, revtex, eps
A study of adsorption isotherms for the removal of herbicide Atlantis WG from aqueous solutions by using Bentonite clay
The subject of this research involves studying adsorption to removal herbicide Atlantis WG from aqueous solutions by bentonite clay. The equilibrium concentration have been determined spectra photometry by using UV-Vis spectrophotometer. The experimental equilibrium sorption data were analyzed by two widely, Langmuir and Freundlish isotherm models. The Langmuir model gave a better fit than Freundlich model The adsorption amount of (Atlantis WG) increased when the temperature and pH decreased. The thermodynamic parameters like ?G, ?H, and ?S have been calculated from the effect of temperature on adsorption process, is exothermic. The kinetic of adsorption process was studied depending on Lagergren ,Morris ? Weber and Rauschenberg equations
Quasi-molecular lines in Lyman wings of cool DA white dwarfs; Application to FUSE observations of G231-40
We present new theoretical calculations of the total line profiles of Lyman
alpha and Lyman beta which include perturbations by both neutral hydrogen AND
protons and all possible quasi-molecular states of H_2 and H_2^+. They are used
to improve theoretical modeling of synthetic spectra for cool DA white dwarfs.
We compare them with FUSE observation of G231-40. The appearance of the line
wings between Lyman alpha and Lyman beta is shown to be sensitive to the
relative abundance of hydrogen ions and neutral atoms, and thereby to provide a
temperature diagnostic for stellar atmospheres and laboratory plasmas.Comment: 6 pages, 4 figures, accepted for publication in Astronomy and
Astrophysic
Vibrational Excitations in Weakly Coupled Single-Molecule Junctions: A Computational Analysis
In bulk systems, molecules are routinely identified by their vibrational
spectrum using Raman or infrared spectroscopy. In recent years, vibrational
excitation lines have been observed in low-temperature conductance measurements
on single molecule junctions and they can provide a similar means of
identification. We present a method to efficiently calculate these excitation
lines in weakly coupled, gateable single-molecule junctions, using a
combination of ab initio density functional theory and rate equations. Our
method takes transitions from excited to excited vibrational state into account
by evaluating the Franck-Condon factors for an arbitrary number of vibrational
quanta, and is therefore able to predict qualitatively different behaviour from
calculations limited to transitions from ground state to excited vibrational
state. We find that the vibrational spectrum is sensitive to the molecular
contact geometry and the charge state, and that it is generally necessary to
take more than one vibrational quantum into account. Quantitative comparison to
previously reported measurements on pi-conjugated molecules reveals that our
method is able to characterize the vibrational excitations and can be used to
identify single molecules in a junction. The method is computationally feasible
on commodity hardware.Comment: 9 pages, 7 figure
Antiferromagnetic spintronics
Antiferromagnetic materials are magnetic inside, however, the direction of
their ordered microscopic moments alternates between individual atomic sites.
The resulting zero net magnetic moment makes magnetism in antiferromagnets
invisible on the outside. It also implies that if information was stored in
antiferromagnetic moments it would be insensitive to disturbing external
magnetic fields, and the antiferromagnetic element would not affect
magnetically its neighbors no matter how densely the elements were arranged in
a device. The intrinsic high frequencies of antiferromagnetic dynamics
represent another property that makes antiferromagnets distinct from
ferromagnets. The outstanding question is how to efficiently manipulate and
detect the magnetic state of an antiferromagnet. In this article we give an
overview of recent works addressing this question. We also review studies
looking at merits of antiferromagnetic spintronics from a more general
perspective of spin-ransport, magnetization dynamics, and materials research,
and give a brief outlook of future research and applications of
antiferromagnetic spintronics.Comment: 13 pages, 7 figure
- …
