136 research outputs found

    Oral Health Status and Treatment Needs of Dairy Workers in Salem, Tamilnadu: A Cross Sectional study

    Get PDF
    AIM OF THE STUDY: The present study was conducted to assess the oral health status and treatment needs of dairy plant workers of Salem District Co-operative Milk Producers Union Limited, Salem city, Tamilnadu. OBJECTIVES: 1. To assess the oral health status of dairy plant workers in Salem city, Tamil Nadu using modified WHO Oral Health Assessment Form- 1997. 2. To assess the treatment needs of dairy plant workers in Salem city, Tamil Nadu using modified WHO Oral Health Assessment Form - 1997. 3. To gather baseline data regarding their demographic profile and oral hygiene practices. METHODOLOGY: A cross - sectional descriptive survey was conducted to assess the oral health status and treatment needs of 750 dairy plant workers in dairy plant, Salem, Tamilnadu. Convenient sampling technique was used to recruit the study subjects. Data was collected using World Health Organization (WHO) Oral Health Surveys – Basic Methods Proforma (1997). The collected data was subjected to statistical analysis using, Statistical Package for the Social Sciences (SPSS) software version 20. RESULTS: Majority of the dairy plant workers are males 513(68.4%) and 237 (31.6%) were females. About 29.7% workers had dental fluorosis. About 25.06% workers had periodontal diseases based on CPI score 4 - 6 mm or more of pocket depth and 10% had loss of attachment. The prevalence of dental trauma was found to be 5.6%. The prevalence of dental caries among the study population was 75.2% and with the mean Decayed/ Missing / Filled Teeth (DMFT) was 5.19± 4.478. Only 25 (3.3%) workers were using upper/lower partial dentures. CONCLUSION: The oral health status of dairy plant workers was poor with high prevalence of dental caries and periodontal disease. It was observed that there was a lack of awareness towards oral health which could be improved through health education and preventive measures by dental health professionals and primary health care workers for prompt and preventive measures

    Geographic population structure analysis of worldwide human populations infers their biogeographical origins

    Get PDF
    The search for a method that utilizes biological information to predict humans’ place of origin has occupied scientists for millennia. Over the past four decades, scientists have employed genetic data in an effort to achieve this goal but with limited success. While biogeographical algorithms using next-generation sequencing data have achieved an accuracy of 700 km in Europe, they were inaccurate elsewhere. Here we describe the Geographic Population Structure (GPS) algorithm and demonstrate its accuracy with three data sets using 40,000–130,000 SNPs. GPS placed 83% of worldwide individuals in their country of origin. Applied to over 200 Sardinians villagers, GPS placed a quarter of them in their villages and most of the rest within 50 km of their villages. GPS’s accuracy and power to infer the biogeography of worldwide individuals down to their country or, in some cases, village, of origin, underscores the promise of admixture-based methods for biogeography and has ramifications for genetic ancestry testing

    Ingot-like class of wavefront sensors for laser guide stars

    Get PDF
    Context. Full sky coverage adaptive optics (AO) on extremely large telescopes requires the adoption of several laser guide stars as references. With such large apertures, the apparent elongation of the beacons is absolutely significant. With a few exceptions, wavefront sensors (WFSs) designed for natural guide stars can be adapted and used in suboptimal mode in this context. Aims. We analyse and describe the geometrical properties of a class of WFSs that are specifically designed to deal with laser guide stars propagated from a location in the immediate vicinity of the telescope aperture. Methods. We describe, in three dimensions, the loci where the light of the laser guide stars would focus in the focal volume located behind the focal plane where astronomical objects are reimaged. We also describe the properties of several types of optomechanical devices that act as perturbers for this new class of pupil plane sensors, through refraction and reflections. We refer to these as ingot WFSs. Results. We provide the recipes both for the most reasonably complex version of these WFSs, with six pupils and, for the simplest one, only three pupils. Both of them are referred to on the basis of the European Extremely Large Telescope (ELT) case. We outlined elements that are meant to give a qualitative idea of how the sensitivity of this new class of sensors compares to conventional ones. Conclusions. We present a new class of WFSs, based on an extension to the case of elongated sources at a finite distance of the pyramid WFS. We point out which advantages of the pyramid can be retained and how it may be adopted to optimize the sensing procedure

    The GenoChip: A New Tool for Genetic Anthropology

    Get PDF
    The Genographic Project is an international effort aimed at charting human migratory history. The project is nonprofit and nonmedical, and, through its Legacy Fund, supports locally led efforts to preserve indigenous and traditional cultures. Although the first phase of the project was focused on uniparentally inherited markers on the Y-chromosome and mitochondrial DNA (mtDNA), the current phase focuses on markers from across the entire genome to obtain a more complete understanding of human genetic variation. Although many commercial arrays exist for genome-wide single-nucleotide polymorphism (SNP) genotyping, they were designed for medical genetic studies and contain medically related markers that are inappropriate for global population genetic studies. GenoChip, the Genographic Project’s new genotyping array, was designed to resolve these issues and enable higher resolution research into outstanding questions in genetic anthropology. TheGenoChip includes ancestry informativemarkers obtained for over 450 human populations, an ancient human (Saqqaq), and two archaic hominins (Neanderthal and Denisovan) and was designed to identify all knownY-chromosome andmtDNAhaplogroups. The chip was carefully vetted to avoid inclusion ofmedically relevant markers. To demonstrate its capabilities, we compared the FST distributions of GenoChip SNPs to those of two commercial arrays. Although all arrays yielded similarly shaped (inverse J) FST distributions, the GenoChip autosomal and X-chromosomal distributions had the highestmean FST, attesting to its ability to discern subpopulations. The chip performances are illustrated in a principal component analysis for 14 worldwide populations. In summary, the GenoChip is a dedicated genotyping platform for genetic anthropology. With an unprecedented number of approximately 12,000 Y-chromosomal and approximately 3,300 mtDNA SNPs and over 130,000 autosomal and X-chromosomal SNPswithout any known health,medical, or phenotypic relevance, the GenoChip is a useful tool for genetic anthropology and population genetics

    End-to-End simulation framework for astronomical spectrographs: SOXS, CUBES and ANDES

    Full text link
    We present our numerical simulation approach for the End-to-End (E2E) model applied to various astronomical spectrographs, such as SOXS (ESO-NTT), CUBES (ESO-VLT), and ANDES (ESO-ELT), covering multiple wavelength regions. The E2E model aim at simulating the expected astronomical observations starting from the radiation of the scientific sources (or calibration sources) up to the raw-frame data produced by the detectors. The comprehensive description includes E2E architecture, computational models, and tools for rendering the simulated frames. Collaboration with Data Reduction Software (DRS) teams is discussed, along with efforts to meet instrument requirements. The contribution to the cross-correlation algorithm for the Active Flexure Compensation (AFC) system of CUBES is detailed.Comment: 19 pages, 17 figures, SPIE Astronomical Telescopes + Instrumentation, Yokohama 2024. arXiv admin note: text overlap with arXiv:2209.07185, arXiv:2012.1268

    MAVIS: The adaptive optics module feasibility study

    Get PDF
    The Adaptive Optics Module of MAVIS is a self-contained MCAO module, which delivers a corrected FoV to the postfocal scientific instruments, in the visible. The module aims to exploit the full potential of the ESO VLT UT4 Adaptive Optics Facility, which is composed of the high spatial frequency deformable secondary mirror and the laser guide stars launching and control systems. During the MAVIS Phase A, we evaluated, with the support of simulations and analysis at different levels, the main terms of the error budgets aiming at estimating the realistic AOM performance. After introducing the current opto-mechanical design and AO scheme of the AOM, we here present the standard wavefront error budget and the other budgets, including manufacturing, alignment of the module, thermal behavior and noncommon path aberrations, together with the contribution of the upstream telescope system

    Population differentiation of Southern Indian male lineages correlates with agricultural expansions predating the caste system

    Get PDF
    Christina J. Adler, Alan Cooper, Clio S.I. Der Sarkissian and Wolfgang Haak are contributors to the Genographic ConsortiumPrevious studies that pooled Indian populations from a wide variety of geographical locations, have obtained contradictory conclusions about the processes of the establishment of the Varna caste system and its genetic impact on the origins and demographic histories of Indian populations. To further investigate these questions we took advantage that both Y chromosome and caste designation are paternally inherited, and genotyped 1,680 Y chromosomes representing 12 tribal and 19 non-tribal (caste) endogamous populations from the predominantly Dravidian-speaking Tamil Nadu state in the southernmost part of India. Tribes and castes were both characterized by an overwhelming proportion of putatively Indian autochthonous Y-chromosomal haplogroups (H-M69, F-M89, R1a1-M17, L1-M27, R2-M124, and C5-M356; 81% combined) with a shared genetic heritage dating back to the late Pleistocene (10–30 Kya), suggesting that more recent Holocene migrations from western Eurasia contributed, <20% of the male lineages. We found strong evidence for genetic structure, associated primarily with the current mode of subsistence. Coalescence analysis suggested that the social stratification was established 4–6 Kya and there was little admixture during the last 3 Kya, implying a minimal genetic impact of the Varna(caste) system from the historically-documented Brahmin migrations into the area. In contrast, the overall Y-chromosomal patterns, the time depth of population diversifications and the period of differentiation were best explained by the emergence of agricultural technology in South Asia. These results highlight the utility of detailed local genetic studies within India, without prior assumptions about the importance of Varna rank status for population grouping, to obtain new insights into the relative influences of past demographic events for the population structure of the whole of modern India.GaneshPrasad ArunKumar, David F. Soria-Hernanz, Valampuri John Kavitha, Varatharajan Santhakumari Arun, Adhikarla Syama, Kumaran Samy Ashokan, Kavandanpatti Thangaraj Gandhirajan, Koothapuli Vijayakumar, Muthuswamy Narayanan, Mariakuttikan Jayalakshmi, Janet S. Ziegle, Ajay K. Royyuru, Laxmi Parida, R. Spencer Wells, Colin Renfrew, Theodore G. Schurr, Chris Tyler Smith, Daniel E. Platt, Ramasamy Pitchappan, The Genographic Consortiu

    Genetic diversity in the lesser Antilles and its implications for the settlement of the Caribbean Basin

    Get PDF
    Historical discourses about the Caribbean often chronicle West African and European influence to the general neglect of indigenous people's contributions to the contemporary region. Consequently, demographic histories of Caribbean people prior to and after European contact are not well understood. Although archeological evidence suggests that the Lesser Antilles were populated in a series of northward and eastern migratory waves, many questions remain regarding the relationship of the Caribbean migrants to other indigenous people of South and Central America and changes to the demography of indigenous communities post-European contact. To explore these issues, we analyzed mitochondrial DNA and Y-chromosome diversity in 12 unrelated individuals from the First Peoples Community in Arima, Trinidad, and 43 unrelated Garifuna individuals residing in St. Vincent. In this community- sanctioned research, we detected maternal indigenous ancestry in 42% of the participants, with the remainder having haplotypes indicative of African and South Asian maternal ancestry. Analysis of Y-chromosome variation revealed paternal indigenous American ancestry indicated by the presence of haplogroup Q-M3 in 28% of the male participants from both communities, with the remainder possessing either African or European haplogroups. This finding is the first report of indigenous American paternal ancestry among indigenous populations in this region of the Caribbean. Overall, this study illustrates the role of the region's first peoples in shaping the genetic diversity seen in contemporary Caribbean populations

    Analysis of biogeographic ancestry reveals complex genetic histories for indigenous communities of St. Vincent and Trinidad

    Get PDF
    Objectives From a genetic perspective, relatively little is known about how mass emigrations of African, European, and Asian peoples beginning in the 16th century affected Indigenous Caribbean populations. Therefore, we explored the impact of serial colonization on the genetic variation of the first Caribbean islanders. Materials and methods Sixty-four members of St. Vincent's Garifuna Community and 36 members of Trinidad's Santa Rosa First People's Community (FPC) of Arima were characterized for mitochondrial DNA and Y-chromosome diversity via direct sequencing and targeted SNP and STR genotyping. A subset of 32 Garifuna and 18 FPC participants were genotyped using the GenoChip 2.0 microarray. The resulting data were used to examine genetic diversity, admixture, and sex biased gene flow in the study communities. Results The Garifuna were most genetically comparable to African descendant populations, whereas the FPC were more similar to admixed American groups. Both communities also exhibited moderate frequencies of Indigenous American matrilines and patrilines. Autosomal SNP analysis indicated modest Indigenous American ancestry in these populations, while both showed varying degrees of African, European, South Asian, and East Asian ancestry, with patterns of sex-biased gene flow differing between the island communities. Discussion These patterns of genetic variation are consistent with historical records of migration, forced, or voluntary, and suggest that different migration events shaped the genetic make-up of each island community. This genomic study is the highest resolution analysis yet conducted with these communities, and provides a fuller understanding of the complex bio-histories of Indigenous Caribbean peoples in the Lesser Antilles

    Hurdles faced by researchers while writing and publishing academic papers in English

    No full text
    corecore