1,932 research outputs found
Fluid mechanics of continuous flow electrophoresis
The following aspects of continuous flow electrophoresis were studied: (1) flow and temperature fields; (2) hydrodynamic stability; (3) separation efficiency, and (4) characteristics of wide gap chambers (the SPAR apparatus). Simplified mathematical models were developed so as to furnish a basis for understanding the phenomena and comparison of different chambers and operating conditions. Studies of the hydrodynamic stability disclosed that a wide gap chamber may be particularly sensitive to axial temperature variations which could be due to uneven heating or cooling. The mathematical model of the separation process includes effects due to the axial velocity, electro-osmotic cross flow and electrophoretic migration, all including the effects of temperature dependent properties
Integrating BOINC with Microsoft Excel: A case study
The convergence of conventional Grid computing with public resource computing (PRC) offers potential benefits in the enterprise setting. For this work we took the popular PRC toolkit BOINC and used it to execute a previously monolithic Microsoft Excel financial model across several commodity computers. Our experience indicates that speedup approaching linear may be realised for certain scenarios, and that this approach offers a viable route to leveraging idle desktop PCs in the enterprise
Flow and thermal effects in continuous flow electrophoresis
In continuous flow electrophoresis the axial flow structure changes from a fully developed rectilinear form to one characterized by meandering as power levels are increased. The origin of this meandering is postulated to lie in a hydrodynamic instability driven by axial (and possibly lateral) temperature gradients. Experiments done at MSFC show agreement with the theory
Body composition in Nepalese children using isotope dilution: the production of ethnic-specific calibration equations and an exploration of methodological issues.
Background. Body composition is important as a marker of both current and future health. Bioelectrical impedance (BIA) is a simple and accurate method for estimating body composition, but requires population-specific calibration equations. Objectives. (1) To generate population specific calibration equations to predict lean mass (LM) from BIA in Nepalese children aged 7-9 years. (2) To explore methodological changes that may extend the range and improve accuracy. Methods. BIA measurements were obtained from 102 Nepalese children (52 girls) using the Tanita BC-418. Isotope dilution with deuterium oxide was used to measure total body water and to estimate LM. Prediction equations for estimating LM from BIA data were developed using linear regression, and estimates were compared with those obtained from the Tanita system. We assessed the effects of flexing the arms of children to extend the range of coverage towards lower weights. We also estimated potential error if the number of children included in the study was reduced. Findings. Prediction equations were generated, incorporating height, impedance index, weight and sex as predictors (R (2) 93%). The Tanita system tended to under-estimate LM, with a mean error of 2.2%, but extending up to 25.8%. Flexing the arms to 90° increased the lower weight range, but produced a small error that was not significant when applied to children <16 kg (p 0.42). Reducing the number of children increased the error at the tails of the weight distribution. Conclusions. Population-specific isotope calibration of BIA for Nepalese children has high accuracy. Arm position is important and can be used to extend the range of low weight covered. Smaller samples reduce resource requirements, but leads to large errors at the tails of the weight distribution
Participatory women’s groups and counseling through home visits to improve child growth in rural eastern India: protocol for a cluster randomised controlled trial
Background: Childhood stunting (low height-for-age) is a marker of chronic undernutrition and predicts children’s subsequent physical and cognitive development. An estimated 52 million children in India are stunted. There is a broad consensus on determinants of child undernutrition and interventions to address it, but a lack of operational research testing strategies to increase the coverage of these interventions in high burden areas. Our study aims to assess the impact, costeffectiveness, and scalability of a community intervention involving a government-proposed community-based worker to improve growth in children under two
<i>In vitro</i> Characterization of Phenylacetate Decarboxylase, a Novel Enzyme Catalyzing Toluene Biosynthesis in an Anaerobic Microbial Community
Anaerobic bacterial biosynthesis of toluene from phenylacetate was reported more than two decades ago, but the biochemistry underlying this novel metabolism has never been elucidated. Here we report results of in vitro characterization studies of a novel phenylacetate decarboxylase from an anaerobic, sewage-derived enrichment culture that quantitatively produces toluene from phenylacetate; complementary metagenomic and metaproteomic analyses are also presented. Among the noteworthy findings is that this enzyme is not the well-characterized clostridial p-hydroxyphenylacetate decarboxylase (CsdBC). However, the toluene synthase under study appears to be able to catalyze both phenylacetate and p-hydroxyphenylacetate decarboxylation. Observations suggesting that phenylacetate and p-hydroxyphenylacetate decarboxylation in complex cell-free extracts were catalyzed by the same enzyme include the following: (i) the specific activity for both substrates was comparable in cell-free extracts, (ii) the two activities displayed identical behavior during chromatographic separation of cell-free extracts, (iii) both activities were irreversibly inactivated upon exposure to O2, and (iv) both activities were similarly inhibited by an amide analog of p-hydroxyphenylacetate. Based upon these and other data, we hypothesize that the toluene synthase reaction involves a glycyl radical decarboxylase. This first-time study of the phenylacetate decarboxylase reaction constitutes an important step in understanding and ultimately harnessing it for making bio-based toluene
Enhancement of tunneling from a correlated 2D electron system by a many-electron Mossbauer-type recoil in a magnetic field
We consider the effect of electron correlations on tunneling from a 2D
electron layer in a magnetic field parallel to the layer. A tunneling electron
can exchange its momentum with other electrons, which leads to an exponential
increase of the tunneling rate compared to the single-electron approximation.
Explicit results are obtained for a Wigner crystal. They provide a qualitative
and quantitative explanation of the data on electrons on helium. We also
discuss tunneling in semiconductor heterostructures.Comment: published version, 4 pages, 2 figures, RevTeX 3.
[Accepted Manuscript] Formative qualitative research to develop community-based interventions addressing low birth weight in the plains of Nepal.
To explore the factors affecting intra-household food allocation practices to inform the development of interventions to prevent low birth weight in rural plains of Nepal.
Qualitative methodology using purposive sampling to explore the barriers and facilitating factors to improved maternal nutrition.
Rural Dhanusha District, Nepal.
We purposively sampled twenty-five young daughters-in-law from marginalised groups living in extended families and conducted semi-structured interviews with them. We also conducted one focus group discussion with men and one with female community health volunteers who were mothers-in-law.
Gender and age hierarchies were important in household decision making. The mother-in-law was responsible for ensuring that a meal was provided to productive household members. The youngest daughter-in-law usually cooked last and ate less than other family members, and showed respect for other family members by cooking only when permitted and deferring to others' choice of food. There were limited opportunities for these women to snack between main meals. Daughters-in-law' movement outside the household was restricted and therefore family members perceived that their nutritional need was less. Poverty affected food choice and families considered cost before nutritional value.
It is important to work with the whole household, particularly mothers-in-law, to improve maternal nutrition. We present five barriers to behaviour change: poverty; lack of knowledge about cheap nutritional food, the value of snacking, and cheap nutritional food that does not require cooking; sharing food; lack of self-confidence; and deference to household guardians. We discuss how we have targeted our interventions to develop knowledge, discuss strategies to overcome barriers, engage mothers-in-law, and build the confidence and social support networks of pregnant women
Role of the Fractalkine Receptor in CNS Autoimmune Inflammation: New Approach Utilizing a Mouse Model Expressing the Human CX3CR1
Multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system (CNS) is the leading cause of non-traumatic neurological disability in young adults. Immune mediated destruction of myelin and oligodendrocytes is considered the primary pathology of MS, but progressive axonal loss is the major cause of neurological disability. In an effort to understand microglia function during CNS inflammation, our laboratory focuses on the fractalkine/CX3CR1 signaling as a regulator of microglia neurotoxicity in various models of neurodegeneration. Fractalkine (FKN) is a transmembrane chemokine expressed in the CNS by neurons and signals through its unique receptor CX3CR1 present in microglia. During experimental autoimmune encephalomyelitis (EAE), CX3CR1 deficiency confers exacerbated disease defined by severe inflammation and neuronal loss. The CX3CR1 human polymorphism I249/M280 present in ∼20% of the population exhibits reduced adhesion for FKN conferring defective signaling whose role in microglia function and influence on neurons during MS remains unsolved. The aim of this study is to assess the effect of weaker signaling through hCX3CR1I249/M280 during EAE. We hypothesize that dysregulated microglial responses due to impaired CX3CR1 signaling enhance neuronal/axonal damage. We generated an animal model replacing the mouse CX3CR1 locus for the hCX3CR1I249/M280 variant. Upon EAE induction, these mice exhibited exacerbated EAE correlating with severe inflammation and neuronal loss. We also observed that mice with aberrant CX3CR1 signaling are unable to produce FKN and ciliary neurotrophic factor during EAE in contrast to wild type mice. Our results provide validation of defective function of the hCX3CR1I249/M280 variant and the foundation to broaden the understanding of microglia dysfunction during neuroinflammation. © 2018 Cardona et al
- …
