3,638 research outputs found
Fluctuations in mixtures of lamellar- and nonlamellar-forming lipids
We consider the role of nonlamellar-forming lipids in biological membranes by
examining fluctuations, within the random phase approximation, of a model
mixture of two lipids, one of which forms lamellar phases while the other forms
inverted hexagonal phases. To determine the extent to which nonlamellar-forming
lipids facilitiate the formation of nonlamellar structures in lipid mixtures,
we examine the fluctuation modes and various correlation functions in the
lamellar phase of the mixture. To highlight the role fluctuations can play, we
focus on the lamellar phase near its limit of stability. Our results indicate
that in the initial stages of the transition, undulations appear in the
lamellae occupied by the tails, and that the nonlamellar-forming lipid
dominates these undulations. The lamellae occupied by the head groups pinch off
to make the tubes of the hexagonal phase. Examination of different correlations
and susceptibilities makes quantitative the dominant role of the
nonlamellar-forming lipids.Comment: 7 figures (better but larger in byte figures are available upon
resuest), submitte
New mechanism of membrane fusion
We have carried out Monte Carlo simulation of the fusion of bilayers of
single chain amphiphiles which show phase behavior similar to that of
biological lipids. The fusion mechanism we observe is very different from the
``stalk'' hypothesis. Stalks do form on the first stage of fusion, but they do
not grow radially to form a hemifused state. Instead, stalk formation
destabilizes the membranes and results in hole formation in the vicinity of the
stalks. When holes in each bilayer nucleate spontaneously next to the same
stalk, an incomplete fusion pore is formed. The fusion process is completed by
propagation of the initial connection, the stalk, along the edges of the
aligned holes.Comment: 4 pages, 3 figure
Wheat forecast economics effect study
A model to assess the value of improved information regarding the inventories, productions, exports, and imports of crop on a worldwide basis is discussed. A previously proposed model is interpreted in a stochastic control setting and the underlying assumptions of the model are revealed. In solving the stochastic optimization problem, the Markov programming approach is much more powerful and exact as compared to the dynamic programming-simulation approach of the original model. The convergence of a dual variable Markov programming algorithm is shown to be fast and efficient. A computer program for the general model of multicountry-multiperiod is developed. As an example, the case of one country-two periods is treated and the results are presented in detail. A comparison with the original model results reveals certain interesting aspects of the algorithms and the dependence of the value of information on the incremental cost function
Expert elicitation of seasonal abundance of North Atlantic right whales Eubalaena glacialis in the mid-Atlantic
This work was supported in part by US Office of Naval Research (ONR) grants to E.F.: N00014-09-1-0896 at University of California, Santa Barbara and N00014-12-1-0274 at University of California, Davis. This work was also supported by ONR grant N000141210286 to the University of St Andrews. In addition, we gratefully acknowledge funding for this work from The Marine Alliance for Science and Technology for Scotland (MASTS). MASTS is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions.North Atlantic right whales (Eubalaena glacialis; henceforth right whales) are among the most endangered large whales. Although protected since 1935, their abundance has remained low. Right whales occupy the Atlantic Ocean from southern Greenland and the Gulf of St. Lawrence south to Florida. The highly industrialized mid-Atlantic region is part of the species’ migratory corridor. Gaps in knowledge of the species’ movements through the mid-Atlantic limit informed management of stressors to the species. To contribute to filling of these gaps, we elicited estimates of the relative abundance of adult right whales in the mid-Atlantic during four months, representing each season, from ten experts. We elicited the minimum, maximum, and mode as the number of individuals in a hypothetical population of 100 right whales, and confidence estimates as percentages. For each month-sex combination, we merged the ten experts’ answers into one distribution. The estimated modes of relative abundances of both sexes were highest in January and April (females, 29 and 59; males, 22 and 23) and lowest in July and October (females, five and nine; males, three and five). In some cases, our elicitation results were consistent with the results of studies based on sightings data. However, these studies generally did not adjust for sampling effort, which was low and likely variable. Our results supplement the results of these studies and will increase the accuracy of priors in complementary Bayesian models of right whale abundances and movements through the mid-Atlantic.Publisher PDFPeer reviewe
A K-Theoretic Proof of Boutet de Monvel's Index Theorem for Boundary Value Problems
We study the C*-closure A of the algebra of all operators of order and class
zero in Boutet de Monvel's calculus on a compact connected manifold X with
non-empty boundary. We find short exact sequences in K-theory
0->K_i(C(X))->K_i(A/K)->K_{1-i}(C_0(T*X'))->0, i= 0,1, which split, where K
denotes the compact ideal and T*X' the cotangent bundle of the interior of X.
Using only simple K-theoretic arguments and the Atiyah-Singer Index Theorem, we
show that the Fredholm index of an elliptic element in A is given as the
composition of the topological index with mapping K_1(A/K)->K_0(C_0(T*X'))
defined above. This relation was first established by Boutet de Monvel by
different methods.Comment: Title slightly changed. Accepted for publication in Journal fuer die
reine und angewandte Mathemati
Recommended from our members
Experimental Acute Exposure to Thirdhand Smoke and Changes in the Human Nasal Epithelial Transcriptome: A Randomized Clinical Trial.
Importance:No previous studies have shown that acute inhalation of thirdhand smoke (THS) activates stress and survival pathways in the human nasal epithelium. Objective:To evaluate gene expression in the nasal epithelium of nonsmoking women following acute inhalation of clean air and THS. Design, Setting, and Participants:Nasal epithelium samples were obtained from participants in a randomized clinical trial (2011-2015) on the health effects of inhaled THS. In a crossover design, participants were exposed, head only, to THS and to conditioned, filtered air in a laboratory setting. The order of exposures was randomized and exposures were separated by at least 21 days. Ribonucleic acid was obtained from a subset of 4 healthy, nonsmoking women. Exposures:By chance, women in the subset were randomized to receive clean air exposure first and THS exposure second. Exposures lasted 3 hours. Main Outcomes and Measures:Differentially expressed genes were identified using RNA sequencing with a false-discovery rate less than 0.1. Results:Participants were 4 healthy, nonsmoking women aged 27 to 49 years (mean [SD] age, 42 [10.2] years) with no chronic diseases. A total of 389 differentially expressed genes were identified in nasal epithelium exposed to THS, while only 2 genes, which were not studied further, were affected by clean air. Enriched gene ontology terms associated with stress-induced mitochondrial hyperfusion were identified, such as respiratory electron transport chain (q = 2.84 × 10-3) and mitochondrial inner membrane (q = 7.21 × 10-6). Reactome pathway analysis identified terms associated with upregulation of DNA repair mechanisms, such as nucleotide excision repair (q = 1.05 × 10-2). Enrichment analyses using ingenuity pathway analysis identified canonical pathways related to stress-induced mitochondrial hyperfusion (eg, increased oxidative phosphorylation) (P = .001), oxidative stress (eg, glutathione depletion phase II reactions) (P = .04), and cell survival (z score = 5.026). Conclusions and Relevance:This study found that acute inhalation of THS caused cell stress that led to the activation of survival pathways. Some responses were consistent with stress-induced mitochondrial hyperfusion and similar to those demonstrated previously in vitro. These data may be valuable to physicians treating patients exposed to THS and may aid in formulating regulations for the remediation of THS-contaminated environments
Wetting on a spherical wall: influence of liquid-gas interfacial properties
We study the equilibrium of a liquid film on an attractive spherical
substrate for an intermolecular interaction model exhibiting both fluid-fluid
and fluid-wall long-range forces. We first reexamine the wetting properties of
the model in the zero-curvature limit, i.e., for a planar wall, using an
effective interfacial Hamiltonian approach in the framework of the well known
sharp-kink approximation (SKA). We obtain very good agreement with a mean-field
density functional theory (DFT), fully justifying the use of SKA in this limit.
We then turn our attention to substrates of finite curvature and appropriately
modify the so-called soft-interface approximation (SIA) originally formulated
by Napi\'orkowski and Dietrich [Phys. Rev. B 34, 6469 (1986)] for critical
wetting on a planar wall. A detailed asymptotic analysis of SIA confirms the
SKA functional form for the film growth. However, it turns out that the
agreement between SKA and our DFT is only qualitative. We then show that the
quantitative discrepancy between the two is due to the overestimation of the
liquid-gas surface tension within SKA. On the other hand, by relaxing the
assumption of a sharp interface, with, e.g., a simple smoothing of the density
profile there, markedly improves the predictive capability of the theory,
making it quantitative and showing that the liquid-gas surface tension plays a
crucial role when describing wetting on a curved substrate. In addition, we
show that in contrast to SKA, SIA predicts the expected mean-field critical
exponent of the liquid-gas surface tension
Recommended from our members
Meiotic cellular rejuvenation is coupled to nuclear remodeling in budding yeast.
Production of healthy gametes in meiosis relies on the quality control and proper distribution of both nuclear and cytoplasmic contents. Meiotic differentiation naturally eliminates age-induced cellular damage by an unknown mechanism. Using time-lapse fluorescence microscopy in budding yeast, we found that nuclear senescence factors - including protein aggregates, extrachromosomal ribosomal DNA circles, and abnormal nucleolar material - are sequestered away from chromosomes during meiosis II and subsequently eliminated. A similar sequestration and elimination process occurs for the core subunits of the nuclear pore complex in both young and aged cells. Nuclear envelope remodeling drives the formation of a membranous compartment containing the sequestered material. Importantly, de novo generation of plasma membrane is required for the sequestration event, preventing the inheritance of long-lived nucleoporins and senescence factors into the newly formed gametes. Our study uncovers a new mechanism of nuclear quality control and provides insight into its function in meiotic cellular rejuvenation
Nudged Elastic Band calculation of the binding potential for liquids at interfaces
The wetting behavior of a liquid on solid substrates is governed by the
nature of the effective interaction between the liquid-gas and the solid-liquid
interfaces, which is described by the binding or wetting potential which
is an excess free energy per unit area that depends on the liquid film height
. Given a microscopic theory for the liquid, to determine one must
calculate the free energy for liquid films of any given value of ; i.e. one
needs to create and analyze out-of-equilibrium states, since at equilibrium
there is a unique value of , specified by the temperature and chemical
potential of the surrounding gas. Here we introduce a Nudged Elastic Band (NEB)
approach to calculate and illustrate the method by applying it in
conjunction with a microscopic lattice density functional theory for the
liquid. We show too that the NEB results are identical to those obtained with
an established method based on using a fictitious additional potential to
stabilize the non-equilibrium states. The advantages of the NEB approach are
discussed.Comment: 5 pages, 2 figure
- …
