3,638 research outputs found

    Fluctuations in mixtures of lamellar- and nonlamellar-forming lipids

    Full text link
    We consider the role of nonlamellar-forming lipids in biological membranes by examining fluctuations, within the random phase approximation, of a model mixture of two lipids, one of which forms lamellar phases while the other forms inverted hexagonal phases. To determine the extent to which nonlamellar-forming lipids facilitiate the formation of nonlamellar structures in lipid mixtures, we examine the fluctuation modes and various correlation functions in the lamellar phase of the mixture. To highlight the role fluctuations can play, we focus on the lamellar phase near its limit of stability. Our results indicate that in the initial stages of the transition, undulations appear in the lamellae occupied by the tails, and that the nonlamellar-forming lipid dominates these undulations. The lamellae occupied by the head groups pinch off to make the tubes of the hexagonal phase. Examination of different correlations and susceptibilities makes quantitative the dominant role of the nonlamellar-forming lipids.Comment: 7 figures (better but larger in byte figures are available upon resuest), submitte

    New mechanism of membrane fusion

    Full text link
    We have carried out Monte Carlo simulation of the fusion of bilayers of single chain amphiphiles which show phase behavior similar to that of biological lipids. The fusion mechanism we observe is very different from the ``stalk'' hypothesis. Stalks do form on the first stage of fusion, but they do not grow radially to form a hemifused state. Instead, stalk formation destabilizes the membranes and results in hole formation in the vicinity of the stalks. When holes in each bilayer nucleate spontaneously next to the same stalk, an incomplete fusion pore is formed. The fusion process is completed by propagation of the initial connection, the stalk, along the edges of the aligned holes.Comment: 4 pages, 3 figure

    Wheat forecast economics effect study

    Get PDF
    A model to assess the value of improved information regarding the inventories, productions, exports, and imports of crop on a worldwide basis is discussed. A previously proposed model is interpreted in a stochastic control setting and the underlying assumptions of the model are revealed. In solving the stochastic optimization problem, the Markov programming approach is much more powerful and exact as compared to the dynamic programming-simulation approach of the original model. The convergence of a dual variable Markov programming algorithm is shown to be fast and efficient. A computer program for the general model of multicountry-multiperiod is developed. As an example, the case of one country-two periods is treated and the results are presented in detail. A comparison with the original model results reveals certain interesting aspects of the algorithms and the dependence of the value of information on the incremental cost function

    Expert elicitation of seasonal abundance of North Atlantic right whales Eubalaena glacialis in the mid-Atlantic

    Get PDF
    This work was supported in part by US Office of Naval Research (ONR) grants to E.F.: N00014-09-1-0896 at University of California, Santa Barbara and N00014-12-1-0274 at University of California, Davis. This work was also supported by ONR grant N000141210286 to the University of St Andrews. In addition, we gratefully acknowledge funding for this work from The Marine Alliance for Science and Technology for Scotland (MASTS). MASTS is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions.North Atlantic right whales (Eubalaena glacialis; henceforth right whales) are among the most endangered large whales. Although protected since 1935, their abundance has remained low. Right whales occupy the Atlantic Ocean from southern Greenland and the Gulf of St. Lawrence south to Florida. The highly industrialized mid-Atlantic region is part of the species’ migratory corridor. Gaps in knowledge of the species’ movements through the mid-Atlantic limit informed management of stressors to the species. To contribute to filling of these gaps, we elicited estimates of the relative abundance of adult right whales in the mid-Atlantic during four months, representing each season, from ten experts. We elicited the minimum, maximum, and mode as the number of individuals in a hypothetical population of 100 right whales, and confidence estimates as percentages. For each month-sex combination, we merged the ten experts’ answers into one distribution. The estimated modes of relative abundances of both sexes were highest in January and April (females, 29 and 59; males, 22 and 23) and lowest in July and October (females, five and nine; males, three and five). In some cases, our elicitation results were consistent with the results of studies based on sightings data. However, these studies generally did not adjust for sampling effort, which was low and likely variable. Our results supplement the results of these studies and will increase the accuracy of priors in complementary Bayesian models of right whale abundances and movements through the mid-Atlantic.Publisher PDFPeer reviewe

    A K-Theoretic Proof of Boutet de Monvel's Index Theorem for Boundary Value Problems

    Get PDF
    We study the C*-closure A of the algebra of all operators of order and class zero in Boutet de Monvel's calculus on a compact connected manifold X with non-empty boundary. We find short exact sequences in K-theory 0->K_i(C(X))->K_i(A/K)->K_{1-i}(C_0(T*X'))->0, i= 0,1, which split, where K denotes the compact ideal and T*X' the cotangent bundle of the interior of X. Using only simple K-theoretic arguments and the Atiyah-Singer Index Theorem, we show that the Fredholm index of an elliptic element in A is given as the composition of the topological index with mapping K_1(A/K)->K_0(C_0(T*X')) defined above. This relation was first established by Boutet de Monvel by different methods.Comment: Title slightly changed. Accepted for publication in Journal fuer die reine und angewandte Mathemati

    Wetting on a spherical wall: influence of liquid-gas interfacial properties

    Full text link
    We study the equilibrium of a liquid film on an attractive spherical substrate for an intermolecular interaction model exhibiting both fluid-fluid and fluid-wall long-range forces. We first reexamine the wetting properties of the model in the zero-curvature limit, i.e., for a planar wall, using an effective interfacial Hamiltonian approach in the framework of the well known sharp-kink approximation (SKA). We obtain very good agreement with a mean-field density functional theory (DFT), fully justifying the use of SKA in this limit. We then turn our attention to substrates of finite curvature and appropriately modify the so-called soft-interface approximation (SIA) originally formulated by Napi\'orkowski and Dietrich [Phys. Rev. B 34, 6469 (1986)] for critical wetting on a planar wall. A detailed asymptotic analysis of SIA confirms the SKA functional form for the film growth. However, it turns out that the agreement between SKA and our DFT is only qualitative. We then show that the quantitative discrepancy between the two is due to the overestimation of the liquid-gas surface tension within SKA. On the other hand, by relaxing the assumption of a sharp interface, with, e.g., a simple smoothing of the density profile there, markedly improves the predictive capability of the theory, making it quantitative and showing that the liquid-gas surface tension plays a crucial role when describing wetting on a curved substrate. In addition, we show that in contrast to SKA, SIA predicts the expected mean-field critical exponent of the liquid-gas surface tension

    Nudged Elastic Band calculation of the binding potential for liquids at interfaces

    Get PDF
    The wetting behavior of a liquid on solid substrates is governed by the nature of the effective interaction between the liquid-gas and the solid-liquid interfaces, which is described by the binding or wetting potential g(h)g(h) which is an excess free energy per unit area that depends on the liquid film height hh. Given a microscopic theory for the liquid, to determine g(h)g(h) one must calculate the free energy for liquid films of any given value of hh; i.e. one needs to create and analyze out-of-equilibrium states, since at equilibrium there is a unique value of hh, specified by the temperature and chemical potential of the surrounding gas. Here we introduce a Nudged Elastic Band (NEB) approach to calculate g(h)g(h) and illustrate the method by applying it in conjunction with a microscopic lattice density functional theory for the liquid. We show too that the NEB results are identical to those obtained with an established method based on using a fictitious additional potential to stabilize the non-equilibrium states. The advantages of the NEB approach are discussed.Comment: 5 pages, 2 figure
    corecore