17,454 research outputs found
Redundancy approaches in bubble domain memories
Fabrication of integrated circuit chips to compensate for faulty memory elements is discussed. Procedure for testing chips to determine extent of redundancy and faults is described. Mathematical model to define operation is presented. Schematic circuit diagram of test equipment is provided
Current flight test experience related to structural divergence of forward-swept wings
Flight testing the X-29A forward-swept wing aircraft has required development of new flight test techniques to accomplish subcritical extrapolations to the actual structural divergence dynamic pressure of the aircraft. This paper provides current experience related to applying these techniques to analysis of flight data from the forward-swept wing in order to assess the applicability of these techniques to flight test data. The measurements required, maneuvers flown, and flight test conditions are described. Supporting analytical predictions for the techniques are described and the results using flight data are compared to these predictions. Use of the results during envelope expansion and the resulting modifications to the techniques are discussed. Some of the analysis challenges that occurred are addressed and some preliminary conclusions and recommendations are made relative to the usefulness of these techniques in the flight test environment
NASTRAN/FLEXSTAB procedure for static aeroelastic analysis
Presented is a procedure for using the FLEXSTAB External Structural Influence Coefficients (ESIC) computer program to produce the structural data necessary for the FLEXSTAB Stability Derivatives and Static Stability (SD&SS) program. The SD&SS program computes trim state, stability derivatives, and pressure and deflection data for a flexible airplane having a plane of symmetry. The procedure used a NASTRAN finite-element structural model as the source of structural data in the form of flexibility matrices. Selection of a set of degrees of freedom, definition of structural nodes and panels, reordering and reformatting of the flexibility matrix, and redistribution of existing point mass data are among the topics discussed. Also discussed are boundary conditions and the NASTRAN substructuring technique
An Improved Differential Evolution Algorithm for Maritime Collision Avoidance Route Planning
High accuracy navigation and surveillance systems are pivotal to ensure efficient ship route planning and marine safety. Based on existing ship navigation and maritime collision prevention rules, an improved approach for collision avoidance route planning using a differential evolution algorithm was developed. Simulation results show that the algorithm is capable of significantly enhancing the optimized route over current methods. It has the potential to be used as a tool to generate optimal vessel routing in the presence of conflicts
A Search for Stars of Very Low Metal Abundance. V. Photoelectric UBV Photometry of Metal-Weak Candidates from the Northern HK Survey
We report photoelectric UBV data for 268 metal-poor candidates chosen from
the northern HK objective-prism/interference-filter survey of Beers and
colleagues. Over 40 % of the stars have been observed on more than one night,
and most have at least several sets of photometric measurements. Reddening
estimates, preliminary spectroscopic measurements of abundance, and type
classifications are reported.Comment: To Appear in the Astronomical Journal, October 200
Robustness of predator-prey models for confinement regime transitions in fusion plasmas
Energy transport and confinement in tokamak fusion plasmas is usually determined by the coupled nonlinear interactions of small-scale drift turbulence and larger scale coherent nonlinear structures, such as zonal flows, together with free energy sources such as temperature gradients. Zero-dimensional models, designed to embody plausible physical narratives for these interactions, can help to identify the origin of enhanced energy confinement and of transitions between confinement regimes. A prime zero-dimensional paradigm is predator-prey or Lotka-Volterra. Here, we extend a successful three-variable (temperature gradient; microturbulence level; one class of coherent structure) model in this genre [M. A. Malkov and P. H. Diamond, Phys. Plasmas 16, 012504 (2009)], by adding a fourth variable representing a second class of coherent structure. This requires a fourth coupled nonlinear ordinary differential equation. We investigate the degree of invariance of the phenomenology generated by the model of Malkov and Diamond, given this additional physics. We study and compare the long-time behaviour of the three-equation and four-equation systems, their evolution towards the final state, and their attractive fixed points and limit cycles. We explore the sensitivity of paths to attractors. It is found that, for example, an attractive fixed point of the three-equation system can become a limit cycle of the four-equation system. Addressing these questions which we together refer to as “robustness” for convenience is particularly important for models which, as here, generate sharp transitions in the values of system variables which may replicate some key features of confinement transitions. Our results help to establish the robustness of the zero-dimensional model approach to capturing observed confinement phenomenology in tokamak fusion plasmas
Stress analyses of B-52 pylon hooks
The NASTRAN finite element computer program was used in the two dimensional stress analysis of B-52 carrier aircraft pylon hooks: (1) old rear hook (which failed), (2) new rear hook (improved geometry), (3) new DAST rear hook (derated geometry), and (4) front hook. NASTRAN model meshes were generated by the aid of PATRAN-G computer program. Brittle limit loads for all the four hooks were established. The critical stress level calculated from NASTRAN agrees reasonably well with the values predicted from the fracture mechanics for the failed old rear hook
Multi-photon Rabi oscillations in high spin paramagnetic impurity
We report on multiple photon monochromatic quantum oscillations (Rabi
oscillations) observed by pulsed EPR (Electron Paramagnetic Resonance) of
Mn (S=5/2) impurities in MgO. We find that when the microwave magnetic
field is similar or large than the anisotropy splitting, the Rabi oscillations
have a spectrum made of many frequencies not predicted by the S=1/2 Rabi model.
We show that these new frequencies come from multiple photon coherent
manipulation of the multi-level spin impurity. We develop a model based on the
crystal field theory and the rotating frame approximation, describing the
observed phenomenon with a very good agreement.Comment: International Conference: Resonance in Condensed Matter Altshuler 10
- …
