172 research outputs found
Cross-Calibration of the XMM-Newton EPIC pn & MOS On-Axis Effective Areas Using 2XMM Sources
We aim to examine the relative cross-calibration accuracy of the on-axis
effective areas of the XMM-Newton EPIC pn and MOS instruments. Spectra from a
sample of 46 bright, high-count, non-piled-up isolated on-axis point sources
are stacked together, and model residuals are examined to characterize the EPIC
MOS-to-pn inter-calibration. The MOS1-to-pn and MOS2-to-pn results are broadly
very similar. The cameras show the closest agreement below 1 keV, with MOS
excesses over pn of 0-2% (MOS1/pn) and 0-3% (MOS2/pn). Above 3 keV, the MOS/pn
ratio is consistent with energy-independent (or only mildly increasing)
excesses of 7-8% (MOS1/pn) and 5-8% (MOS2/pn). In addition, between 1-2 keV
there is a `silicon bump' - an enhancement at a level of 2-4% (MOS1/pn) and
3-5% (MOS2/pn). Tests suggest that the methods employed here are stable and
robust. The results presented here provide the most accurate cross-calibration
of the effective areas of the XMM-Newton EPIC pn and MOS instruments to date.
They suggest areas of further research where causes of the MOS-to-pn
differences might be found, and allow the potential for corrections to and
possible rectification of the EPIC cameras to be made in the future.Comment: 8 Pages, 2 figures (3 panels), 1 table. Accepted for publication in
A&
Potential solar axion signatures in X-ray observations with the XMM-Newton observatory
The soft X-ray flux produced by solar axions in the Earth's magnetic field is
evaluated in the context of ESA's XMM-Newton observatory. Recent calculations
of the scattering of axion-conversion X-rays suggest that the sunward
magnetosphere could be an observable source of 0.2-10 keV photons. For
XMM-Newton, any conversion X-ray intensity will be seasonally modulated by
virtue of the changing visibility of the sunward magnetic field region. A
simple model of the geomagnetic field is combined with the ephemeris of
XMM-Newton to predict the seasonal variation of the conversion X-ray intensity.
This model is compared with stacked XMM-Newton blank sky datasets from which
point sources have been systematically removed. Remarkably, a seasonally
varying X-ray background signal is observed. The EPIC count rates are in the
ratio of their X-ray grasps, indicating a non-instrumental, external photon
origin, with significances of 11(pn), 4(MOS1) and 5(MOS2) sigma. After
examining the constituent observations spatially, temporally and in terms of
the cosmic X-ray background, we conclude that this variable signal is
consistent with the conversion of solar axions in the Earth's magnetic field.
The spectrum is consistent with a solar axion spectrum dominated by
bremsstrahlung- and Compton-like processes, i.e. axion-electron coupling
dominates over axion-photon coupling and the peak of the axion spectrum is
below 1 keV. A value of 2.2e-22 /GeV is derived for the product of the
axion-photon and axion-electron coupling constants, for an axion mass in the
micro-eV range. Comparisons with limits derived from white dwarf cooling may
not be applicable, as these refer to axions in the 0.01 eV range. Preliminary
results are given of a search for axion-conversion X-ray lines, in particular
the predicted features due to silicon, sulphur and iron in the solar core, and
the 14.4 keV transition line from 57Fe.Comment: Accepted for publication in MNRAS. 67 pages total, including 39
figures, 6 table
Complex X-ray spectral variability in Mkn 421 observed with XMM-Newton
The bright blazar Mkn 421 has been observed four times for uninterrupted
durations of ~ 9 - 13 hr during the performance verification and calibration
phases of the XMM-Newton mission. The source was strongly variable in all
epochs, with variability amplitudes that generally increased to higher energy
bands. Although the detailed relationship between soft (0.1 - 0.75 keV) and
hard (2 - 10 keV) band differed from one epoch to the next, in no case was
there any evidence for a measurable interband lag, with robust upper limits of
hr in the best-correlated light curves. This is in conflict
with previous claims of both hard and soft lags of ~1 hr in this and other
blazars. However, previous observations suffered a repeated 1.6 hr feature
induced by the low-Earth orbital period, a feature that is not present in the
uninterrupted XMM-Newton data. The new upper limit on leads to a lower
limit on the magnetic field strength and Doppler factor of B \delta^{1/3} \gs
4.7 G, mildly out of line with the predictions from a variety of homogeneous
synchrotron self-Compton emission models in the literature of G. Time-dependent spectral fitting was performed on all epochs,
and no detectable spectral hysteresis was seen. We note however that the source
exhibited significantly different spectral evolutionary behavior from one epoch
to the next, with the strongest correlations in the first and last and an
actual divergance between soft and hard X-ray bands in the third. This
indicates that the range of spectral variability behavior in Mkn 421 is not
fully described in these short snippets; significantly longer uninterrupted
light curves are required, and can be obtained with XMM-Newton.Comment: 21 pages, 4 figures, accepted for ApJ, scheduled for August 1, 200
XMM-Newton observations of the BL Lac MS 0737+7441
We report on the XMM-Newton observations of the BL Lac object MS 0737.9+7441
during the performance verification phase. A simple power-law fit provides an
adequate description of the integrated spectrum in the 0.2-10 keV energy band.
The photon index is slightly steeper in the EPIC pn data with 2.38+-0.01
compared to the EPIC MOS data (2.28+-0.01). The difference is most probably due
to the present uncertainties in the calibration of the EPIC MOS and EPIC pn
data sets. We report evidence for intrinsic absorption in the distant BL Lac
above the Galactic column N_H,Gal=3.2*10^20 cm^-2 which is N_H,fit(z=0.315)=
(2.70+-0.20)*10^20cm^-2 in the EPIC pn data and N_H,fit(z=0.315)=
(3.25+-0.25)*10^20cm^-2 in the EPIC MOS data assuming neutral gas and solar
abundances. The flux variations are found to be of the order of 10 %.Comment: 4 pages, 4 Figures, accepted for publication in the special A&A
Letters issue for XMM-Newto
Statistical evaluation of the flux cross-calibration of the XMM-Newton EPIC cameras
The second XMM-Newton serendipitous source catalogue, 2XMM, provides the
ideal data base for performing a statistical evaluation of the flux
cross-calibration of the XMM-Newton European Photon Imaging Cameras (EPIC). We
aim to evaluate the status of the relative flux calibration of the EPIC cameras
on board XMM-Newton (MOS1, MOS2, and pn) and investigate the dependence of the
calibration on energy, position in the field of view of the X-ray detectors,
and lifetime of the mission. We compiled the distribution of flux percentage
differences for large samples of 'good quality' objects detected with at least
two of the EPIC cameras. The mean offset of the fluxes and dispersion of the
distributions was then found by Gaussian fitting. Count rate to flux conversion
was performed with a fixed spectral model. The impact on the results of varying
this model was investigated. Excellent agreement was found between the two EPIC
MOS cameras to better than 4% from 0.2 keV to 12.0 keV. MOS cameras register
7-9% higher flux than pn below 4.5 keV and 10-13% flux excess above 4.5 keV. No
evolution of the flux ratios is seen with time, except at energies below 0.5
keV, where we found a strong decrease in the MOS to pn flux ratio with time.
This effect is known to be due to a gradually degrading MOS redistribution
function. The flux ratios show some dependence on distance from the optical
axis in the sense that the MOS to pn flux excess increases with off-axis angle.
Furthermore, in the 4.5-12.0 keV band there is a strong dependence of the MOS
to pn excess flux on the azimuthal-angle. These results strongly suggest that
the calibration of the Reflection Grating Array (RGA) blocking factors is
incorrect at high energies. Finally, we recommend ways to improve the
calculation of fluxes in future versions of XMM-Newton source catalogues.Comment: 11 pages, 10 figures, 3 tables. Abridged Abstract. Accepted for
publication in Astronomy and Astrophysic
Infrared point source variability between the Spitzer and MSX surveys of the Galactic mid-plane
We present a list of 552 sources with suspected variability, based on a
comparison of mid-infrared photometry from the GLIMPSE I and MSX surveys, which
were carried out nearly a decade apart. We were careful to address issues such
as the difference in resolution and sensitivity between the two surveys, as
well as the differences in the spectral responses of the instruments. We
selected only sources where the IRAC 8.0 and MSX 8.28 micron fluxes differ by
more than a factor of two, in order to minimize contamination from sources
where the difference in fluxes at 8 micron is due to a strong 10 micron
silicate feature. We present a subset of 40 sources for which additional
evidence suggests variability, using 2MASS and MIPSGAL data. Based on a
comparison with the variability flags in the IRAS and MSX Point-Source Catalogs
we estimate that at least a quarter of the 552 sources, and at least half of
the 40 sources are truly variable. In addition, we tentatively confirm the
variability of one source using multi-epoch IRAS LRS spectra. We suggest that
most of the sources in our list are likely to be Asymptotic Giant Branch stars.Comment: 47 pages, 12 Figures, 3 Tables, accepted for publication in A
Rank-(n – 1) convexity and quasiconvexity for divergence free fields
The CAST experiment at CERN (European Organization of Nuclear Research)
searches for axions from the sun. The axion is a pseudoscalar particle that was
motivated by theory thirty years ago, with the intention to solve the strong CP
problem. Together with the neutralino, the axion is one of the most promising
dark matter candidates. The CAST experiment has been taking data during the
last two years, setting an upper limit on the coupling of axions to photons
more restrictive than from any other solar axion search in the mass range below
0.1 eV. In 2005 CAST will enter a new experimental phase extending the
sensitivity of the experiment to higher axion masses. The CAST experiment
strongly profits from technology developed for high energy physics and for
X-ray astronomy: A superconducting prototype LHC magnet is used to convert
potential axions to detectable X-rays in the 1-10 keV range via the inverse
Primakoff effect. The most sensitive detector system of CAST is a spin-off from
space technology, a Wolter I type X-ray optics in combination with a prototype
pn-CCD developed for ESA's XMM-Newton mission. As in other rare event searches,
background suppression and a thorough shielding concept is essential to improve
the sensitivity of the experiment to the best possible. In this context CAST
offers the opportunity to study the background of pn-CCDs and its long term
behavior in a terrestrial environment with possible implications for future
space applications. We will present a systematic study of the detector
background of the pn-CCD of CAST based on the data acquired since 2002
including preliminary results of our background simulations.Comment: 11 pages, 8 figures, to appear in Proc. SPIE 5898, UV, X-Ray, and
Gamma-Ray Space Instrumentation for Astronomy XI
Tidal Disruption of a Star By a Black Hole : Observational Signature
We have modeled the time-variable profiles of the Halpha emission line from
the non-axisymmetric disk and debris tail created in the tidal disruption of a
solar-type star by a million solar mass black hole. Two tidal disruption event
simulations were carried out using a three dimensional relativistic
smooth-particle hydrodynamic code, to describe the early evolution of the
debris during the first fifty to ninety days. We have calculated the physical
conditions and radiative processes in the debris using the photoionization code
CLOUDY. We model the emission line profiles in the period immediately after the
accretion rate onto the black hole became significant. We find that the line
profiles at these very early stages of the evolution of the post-disruption
debris do not resemble the double peaked profiles expected from a rotating disk
since the debris has not yet settled into such a stable structure. As a result
of the uneven distribution of the debris and the existence of a ``tidal tail''
(the stream of returning debris), the line profiles depend sensitively on the
orientation of the tail relative to the line of sight. Moreover, the predicted
line profiles vary on fairly short time scales (of order hours to days). Given
the accretion rate onto the black hole we also model the Halpha light curve
from the debris and the evolution of the Halpha line profiles in time.Comment: 20 pages, 9 figures, to appear in ApJ, 1 August 2004 issue; mpeg
simulations of tidal disruption available at
http://www.astro.psu.edu/users/tamarab/tdmovies.htm
- …
