518 research outputs found
Magnetic and vibrational properties of high-entropy alloys
The magnetic properties of high-entropy alloys based on equimolar FeCoCrNi were investigated using vibrating sample magnetometry to determine their usefulness in high-temperature magnetic applications. Nuclear resonant inelastic x-ray scattering measurements were performed to evaluate the vibrational entropy of the ^(57)Fe atoms and to infer chemical order. The configurational and vibrational entropy of alloying are discussed as they apply to these high-entropy alloys
Absence of long-range chemical ordering in equimolar FeCoCrNi
Equimolar FeCoCrNi alloys have been the topic of recent research as "high-entropy alloys," where the name is derived from the high configurational entropy of mixing for a random solid solution. Despite their name, no systematic study of ordering in this alloy system has been performed to
date. Here, we present results from anomalous x-ray scattering and neutron scattering on quenched and annealed samples. An alloy of FeNi_3 was prepared in the same manner to act as a control. Evidence of long-range chemical ordering is clearly observed in the annealed FeNi_3 sample from both experimental techniques. The FeCoCrNi sample given the same heat treatment lacks long-range chemical order
Effect of electric-current pulses on grain-structure evolution in cryogenically rolled copper
The effect of electric-current pulses on the evolution of microstructure and texture in cryogenically rolled copper was determined. The pulsed material was found to be completely recrystallized, and the recrystallization mechanism was deduced to be similar to that operating during conventional static annealing. The microstructural changes were explained simply in terms of Joule heating. A significant portion of the recrystallization process was concluded to have occurred after pulsing; i.e., during cooling to ambient temperature. The grain structure and microhardness were shown to vary noticeably in the heat-affected zone (HAZ); these observations mirrored variations of temper colors. Accordingly, the revealed microstructure heterogeneity was attributed to the inhomogeneous temperature distribution developed during pulsing. In the central part of the HAZ, the mean grain size increased with current density and this effect was associated with the temperature rise per se. This grain size was slightly smaller than that in statically recrystallized specimens
Microstructure response of cryogenically-rolled Cu-30Zn brass to electric-current pulsing
The effect of transient electric-current pulses (ECP) on the evolution of microstructure and texture of cryogenically-rolled Cu-30Zn brass was determined. The pulsing was shown to lead to recrystallization followed by grain growth. The mean grain size in the recrystallized material was 0.5 μm, thus indicating that cryogenic rolling coupled with ECP is suitable for the production of an ultrafine-grain microstructure in Cu-30Zn brass. The differences in the recrystallization texture in pulsed versus statically-annealed conditions suggested a distinct recrystallization mechanism during ECP
Grain growth during annealing of cryogenically-rolled Cu-30Zn brass
The grain-growth behavior of cryogenically-rolled Cu-30Zn brass during isothermal annealing at 900 °C was examined. The observed microstructure coarsening was interpreted in terms of normal grain growth with a grain-growth exponent of ∼4. The relatively slow grain-growth kinetics was attributed to the formation of precipitates at the grain boundaries and the interaction of texture and grain growth. The development of a moderate-strength {110} α fiber texture (∼4 times random) as well as the presence of a limited number of twin variants within the grains suggested the occurrence of variant selection during annealing
Location-Specific Microstructure and the Effect of Heat Treatment on Electron-Beam Melted Ni-Based Superalloy LSHR
Examine set-to-set variability with 4 build sets with the same layout Establish the effect of solutioning heat treatments (HT) on as-fabricated grain structure and microstructure (gamma)-solvus= 1156 C (1) As-fabricated (2) 2 hour subsolvus HT(-15 C) + conventional 2-step aging (3, 4, 5) 0.5 hour, 2 hours, 4 hours supersolvus HT (+18 C) + 2 step aging Gain insight into location-specific microstructure to correlate later to mechanical properties (tensile, creep, LCF behavior
Annealing behavior of cryogenically-rolled Cu-30Zn brass
The static-annealing behavior of cryogenically-rolled Cu-30Zn brass over a wide range of temperature (100-900 °C) was established. Between 300 and 400 °C, microstructure and texture evolution were dominated by discontinuous recrystallization. At temperatures of 500 °C and higher, annealing was interpreted in terms of normal grain growth. The recrystallized microstructure developed at 400 °C was ultrafine with a mean grain size of 0.8 μm, fraction of high-angle boundaries of 90 pct., and a weak crystallographic texture
Fabrication of Turbine Disk Materials by Additive Manufacturing
Precipitation-strengthened, nickel-based superalloys are widely used in the aerospace and energy industries due to their excellent environmental resistance and outstanding mechanical properties under extreme conditions. Powder-bed additive manufacturing (AM) technologies offer the potential to revolutionize the processing of superalloy turbine components by eliminating the need for extensive inventory or expensive legacy tooling. Like selective laser melting (SLM), electron beam melting (EBM) constructs three-dimensional dense components layer-by-layer by melting and solidification of atomized, pre-alloyed powder feedstock within 50-200 micron layers. While SLM has been more widely used for AM of nickel alloys like 718, EBM offers several distinct advantages, such as less retained residual stress, lower risk of contamination, and faster build rates with multiple-electron-beam configurations. These advantages are particularly attractive for turbine disks, for which excessive residual stress and contamination can shorten disk life during high-temperature operation. In this presentation, we will discuss the feasibility of fabricating disk superalloy components using EBM AM. Originally developed using powder metallurgy forging processing, disk superalloys contain a higher refractory content and precipitate volume fraction than alloy 718, thus making them more prone to thermal cracking during AM. This and other challenges to produce homogeneous builds with desired properties will be presented. In particular, the quality of lab-scale samples fabricated via a design of experiments, in which the beam current, build temperature, and beam velocity were varied, will be summarized. The relationship between processing parameters, microstructure, grain orientation, and mechanical response will be discussed
Formation of Minor Phases in a Nickel-Based Disk Superalloy
The minor phases of powder metallurgy disk superalloy LSHR were studied. Samples were consistently heat treated at three different temperatures for long times to approximate equilibrium. Additional heat treatments were also performed for shorter times, to then assess non-equilibrium conditions. Minor phases including MC carbides, M23C6 carbides, M3B2 borides, and sigma were identified. Their transformation temperatures, lattice parameters, compositions, average sizes and total area fractions were determined, and compared to estimates of an existing phase prediction software package. Parameters measured at equilibrium sometimes agreed reasonably well with software model estimates, with potential for further improvements. Results for shorter times representing non-equilibrium indicated significant potential for further extension of the software to such conditions, which are more commonly observed during heat treatments and service at high temperatures for disk applications
Electronic structure and vibrational entropies of fcc Au-Fe alloys
Phonon density of states (DOS) curves were measured on alloys of face-centered-cubic (fcc) Au-Fe using nuclear resonant inelastic x-ray scattering (NRIXS) and inelastic neutron scattering (INS). The NRIXS and INS results were combined to obtain the total phonon DOS and the partial phonon DOS curves of Au and Fe atoms from which vibrational entropies were calculated. The main effect on the vibrational entropy of alloying comes from a stiffening of the Au partial phonon DOS with Fe concentration. Force constants were calculated from first principles for several compositions and show a local stiffening of Au-Au bonds close to Fe atoms. The calculated phonon DOS curves reproduce the experimental trend. The stiffening is attributed to two main effects comparable in magnitude: (i) an increase in electron density in the free-electron-like states and (ii) stronger sd hybridization
- …
