341 research outputs found

    Charge-flow structures as polymeric early-warning fire alarm devices

    Get PDF
    The charge-flow transistor (CFT) and its applications for fire detection and gas sensing were investigated. The utility of various thin film polymers as possible sensing materials was determined. One polymer, PAPA, showed promise as a relative humidity sensor; two others, PFI and PSB, were found to be particularly suitable for fire detection. The behavior of the charge-flow capacitor, which is basically a parallel-plate capacitor with a polymer-filled gap in the metallic tip electrode, was successfully modeled as an RC transmission line. Prototype charge-flow transistors were fabricated and tested. The effective threshold voltage of this metal oxide semiconductor was found to be dependent on whether surface or bulk conduction in the thin film was dominant. Fire tests with a PFI-coated CFT indicate good sensitivity to smouldering fires

    High intermodulation gain in a micromechanical Duffing resonator

    Full text link
    In this work we use a micromechanical resonator to experimentally study small signal amplification near the onset of Duffing bistability. The device consists of a PdAu beam serving as a micromechanical resonator excited by an adjacent gate electrode. A large pump signal drives the resonator near the onset of bistability, enabling amplification of small signals in a narrow bandwidth. To first order, the amplification is inversely proportional to the frequency difference between the pump and signal. We estimate the gain to be about 15dB for our device

    Measuring Charge Transport in an Amorphous Semiconductor Using Charge Sensing

    Full text link
    We measure charge transport in hydrogenated amorphous silicon (a-Si:H) using a nanometer scale silicon MOSFET as a charge sensor. This charge detection technique makes possible the measurement of extremely large resistances. At high temperatures, where the a-Si:H resistance is not too large, the charge detection measurement agrees with a direct measurement of current. The device geometry allows us to probe both the field effect and dispersive transport in the a-Si:H using charge sensing and to extract the density of states near the Fermi energy.Comment: 4 pages, 4 figure

    A chromatographic analysis of the response of polymeric fire-detection devices to combustion products

    Get PDF
    Polymer responses to a variety of smouldering sources, including cellulose, acrylic, urethane, polyvinyl chloride, and wool were investigated. A suitable trapping system for combustion products was developed and a charge flow transistor was fabricated to monitor the transverse or sheet resistance of a thin film

    Measurement of the Casimir force between dissimilar metals

    Get PDF
    The first precise measurement of the Casimir force between dissimilar metals is reported. The attractive force, between a Cu layer evaporated on a microelectromechanical torsional oscillator, and an Au layer deposited on an Al2_2O3_3 sphere, was measured dynamically with a noise level of 6 fN/Hz\sqrt{\rm{Hz}}. Measurements were performed for separations in the 0.2-2 μ\mum range. The results agree to better than 1% in the 0.2-0.5 μ\mum range with a theoretical model that takes into account the finite conductivity and roughness of the two metals. The observed discrepancies, which are much larger than the experimental precision, can be attributed to a lack of a complete characterization of the optical properties of the specific samples used in the experiment.Comment: 6 pages, 4 figure

    Modeling Single Electron Transfer in Si:P Double Quantum Dots

    Full text link
    Solid-state systems such as P donors in Si have considerable potential for realization of scalable quantum computation. Recent experimental work in this area has focused on implanted Si:P double quantum dots (DQDs) that represent a preliminary step towards the realization of single donor charge-based qubits. This paper focuses on the techniques involved in analyzing the charge transfer within such DQD devices and understanding the impact of fabrication parameters on this process. We show that misalignment between the buried dots and surface gates affects the charge transfer behavior and identify some of the challenges posed by reducing the size of the metallic dot to the few donor regime.Comment: 11 pages, 7 figures, submitted to Nanotechnolog

    Energy-efficient full-range oscillation analysis of parallel-plate electrostatically actuated MEMS resonators

    Get PDF
    This is the peer reviewed version of the following article: “Fargas Marques, A., Costa Castelló, R. (2017) Energy-efficient full-range oscillation analysis of parallel-plate electrostatically actuated MEMS resonators, 1-13.” which has been published in final form at [doi: 10.1007/s11071-017-3633-8]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."Electrostatic parallel-plate actuators are a common way of actuating microelectromechanical systems, both statically and dynamically. Nevertheless, actuation voltages and oscillations are limited by the nonlinearity of the actuator that leads to the pull-in phenomena. This work presents a new approach to obtain the electrostatic parallel-plate actuation voltage, which allows to freely select the desired frequency and amplitude of oscillation. Harmonic Balance analysis is used to determine the needed actuation voltage and to choose the most energy-efficient actuation frequency. Moreover, a new two-sided actuation approach is presented that allows to actuate the device in all the stable range using the Harmonic Balance Voltage.Peer ReviewedPostprint (author's final draft

    Experimental investigation of curved electrode actuator dynamics in viscous dielectric media

    Get PDF
    International audienceMicromanipulation of biological cells inside a liquid environment requires an actuator that has a small footprint to reduce viscous drag, and low actuation voltage to prevent electrolysis and Joule heating. Curved electrode actuators hold the promise for underwater micromanipulation because they yield large displacements at low actuation voltages for a small footprint. In this letter, we report on the frequency-domain characteristics of the actuator and demonstrate that the actuator can achieve large displacements (1-10 µm) and generates large forces (1-21 µN) at low actuation voltages (8 V) over 1-1000 Hz frequency range in a viscous dielectric media

    Custom Integrated Circuits

    Get PDF
    Contains table of contents for Part III, table of contents for Section 1 and reports on eleven research projects.IBM CorporationMIT School of EngineeringNational Science Foundation Grant MIP 94-23221Defense Advanced Research Projects Agency/U.S. Army Intelligence Center Contract DABT63-94-C-0053Mitsubishi CorporationNational Science Foundation Young Investigator Award Fellowship MIP 92-58376Joint Industry Program on Offshore Structure AnalysisAnalog DevicesDefense Advanced Research Projects AgencyCadence Design SystemsMAFET ConsortiumConsortium for Superconducting ElectronicsNational Defense Science and Engineering Graduate FellowshipDigital Equipment CorporationMIT Lincoln LaboratorySemiconductor Research CorporationMultiuniversity Research IntiativeNational Science Foundatio

    Fabrication and characterisation of nanocrystalline graphite MEMS resonators using a geometric design to control buckling

    Get PDF
    The simulation, fabrication and characterisation of nanographite MEMS resonators is reported in this paper. The deposition of nanographite is achieved using plasma-enhanced chemical vapour deposition directly onto numerous substrates such as commercial silicon wafers. As a result, many of the reliability issues of devices based on transferred graphene are avoided. The fabrication of the resonators is presented along with a simple undercutting method to overcome buckling, by changing the effective stress of the structure from 436 MPa compressive, to 13 MPa tensile. The characterisation of the resonators using electrostatic actuation and laser Doppler vibrometry is reported, demonstrating resonator frequencies from 5–640 kHz and quality factor above 1819 in vacuum obtained
    corecore