908 research outputs found
Physics of puffing and microexplosion of emulsion fuel droplets
The physics of water-in-oil emulsion droplet microexplosion/puffing has been investigated using high-fidelity interface-capturing simulation. Varying the dispersed-phase (water) sub-droplet size/location and the initiation location of explosive boiling (bubble formation), the droplet breakup processes have been well revealed. The bubble growth leads to local and partial breakup of the parent oil droplet, i.e., puffing. The water sub-droplet size and location determine the after-puffing dynamics. The boiling surface of the water sub-droplet is unstable and evolves further. Finally, the sub-droplet is wrapped by boiled water vapor and detaches itself from the parent oil droplet. When the water sub-droplet is small, the detachment is quick, and the oil droplet breakup is limited. When it is large and initially located toward the parent droplet center, the droplet breakup is more extensive. For microexplosion triggered by the simultaneous growth of multiple separate bubbles, each explosion is local and independent initially, but their mutual interactions occur at a later stage. The degree of breakup can be larger due to interactions among multiple explosions. These findings suggest that controlling microexplosion/puffing is possible in a fuel spray, if the emulsion-fuel blend and the ambient flow conditions such as heating are properly designed. The current study also gives us an insight into modeling the puffing and microexplosion of emulsion droplets and sprays.This article has been made available through the Brunel Open Access Publishing Fund
Propagation of a magnetic domain wall in magnetic wires with asymmetric notches
The propagation of a magnetic domain wall (DW) in a submicron magnetic wire
consisting of a magnetic/nonmagnetic/magnetic trilayered structure with
asymmetric notches was investigated by utilizing the giant magnetoresistance
effect. The propagation direction of a DW was controlled by a pulsed local
magnetic field, which nucleates the DW at one of the two ends of the wire. It
was found that the depinning field of the DW from the notch depends on the
propagation direction of the DW.Comment: 12 pages, 3 figure
Controllable pi junction with magnetic nanostructures
We propose a novel Josephson device in which 0 and states are
controlled by an electrical current. In this system, the state appears in
a superconductor/normal metal/superconductor junction due to the non-local spin
accumulation in the normal metal which is induced by spin injection from a
ferromagnetic electrode. Our proposal offers not only new possibilities for
application of superconducting spin-electronic devices but also the in-depth
understanding of the spin-dependent phenomena in magnetic nanostructures.Comment: 4 pages, 3 figure
Bipolar-Driven Large Magnetoresistance in Silicon
Large linear magnetoresistance (MR) in electron-injected p-type silicon at
very low magnetic field is observed experimentally at room temperature. The
large linear MR is induced in electron-dominated space-charge transport regime,
where the magnetic field modulation of electron-to-hole density ratio controls
the MR, as indicated by the magnetic field dependence of Hall coefficient in
the silicon device. Contrary to the space-charge-induced MR effect in unipolar
silicon device, where the large linear MR is inhomogeneity-induced, our results
provide a different insight into the mechanism of large linear MR in
non-magnetic semiconductors that is not based on the inhomogeneity model. This
approach enables homogeneous semiconductors to exhibit large linear MR at low
magnetic fields that until now has only been appearing in semiconductors with
strong inhomogeneities.Comment: 23 pages, 4 figures (main text), 6 figures (supplemental material
Experimental Demonstration of Room-Temperature Spin Transport in n-Type Germanium Epilayers
次世代半導体材料ゲルマニウムにおける室温スピン伝導を世界で初めて実現.京都大学プレスリリース. 2015-04-27.We report an experimental demonstration of room-temperature spin transport in n-type Ge epilayers grown on a Si(001) substrate. By utilizing spin pumping under ferromagnetic resonance, which inherently endows a spin battery function for semiconductors connected with a ferromagnet, a pure spin current is generated in the n−Ge at room temperature. The pure spin current is detected by using the inverse spin-Hall effect of either a Pt or Pd electrode on n−Ge. From a theoretical model that includes a geometrical contribution, the spin diffusion length in n−Ge at room temperature is estimated to be 660 nm. Moreover, the spin relaxation time decreases with increasing temperature, in agreement with a recently proposed theory of donor-driven spin relaxation in multivalley semiconductors
Real-space observation of current-driven domain wall motion in submicron magnetic wires
Spintronic devices, whose operation is based on the motion of a magnetic
domain wall (DW), have been proposed recently. If a DW could be driven directly
by flowing an electric current instead of a magnetic field, the performance and
functions of such device would be drastically improved. Here we report
real-space observation of the current-driven DW motion by using a well-defined
single DW in a micro-fabricated magnetic wire with submicron width. Magnetic
force microscopy (MFM) visualizes that a single DW introduced in the wire is
displaced back and forth by positive and negative pulsed-current, respectively.
We can control the DW position in the wire by tuning the intensity, the
duration and the polarity of the pulsed-current. It is, thus, demonstrated that
spintronic device operation by the current-driven DW motion is possible.Comment: Accepted and published in PR
Dynamical frictional phenomena in an incommensurate two-chain model
Dynamical frictional phenomena are studied theoretically in a two-chain model
with incommensurate structure. A perturbation theory with respect to the
interchain interaction reveals the contributions from phonons excited in each
chain to the kinetic frictional force. The validity of the theory is verified
in the case of weak interaction by comparing with numerical simulation. The
velocity and the interchain interaction dependences of the lattice structure
are also investigated. It is shown that peculiar breaking of analyticity states
appear, which is characteristic to the two-chain model. The range of the
parameters in which the two-chain model is reduced to the Frenkel-Kontorova
model is also discussed.Comment: RevTex, 9 pages, 7 PostScript figures, to appear in Phys. Rev.
Breakdown of a conservation law in incommensurate systems
We show that invariance properties of the Lagrangian of an incommensurate
system, as described by the Frenkel Kontorova model, imply the existence of a
generalized angular momentum which is an integral of motion if the system
remains floating. The behavior of this quantity can therefore monitor the
character of the system as floating (when it is conserved) or locked (when it
is not). We find that, during the dynamics, the non-linear couplings of our
model cause parametric phonon excitations which lead to the appearance of
Umklapp terms and to a sudden deviation of the generalized momentum from a
constant value, signalling a dynamical transition from a floating to a pinned
state. We point out that this transition is related but does not coincide with
the onset of sliding friction which can take place when the system is still
floating.Comment: 7 pages, 6 figures, typed with RevTex, submitted to Phys. Rev. E
Replaced 27-03-2001: changes to text, minor revision of figure
Collective modes for an array of magnetic dots in the vortex state
The dispersion relations for collective magnon modes for square-planar arrays
of vortex-state magnetic dots, having closure magnetic flux are calculated. The
array dots have no direct contact between each other, and the sole source of
their interaction is the magnetic dipolar interaction. The magnon formalism
using Bose operators along with translational symmetry of the lattice, with the
knowledge of mode structure for the isolated dot, allows the diagonalization of
the system Hamiltonian giving the dispersion relation. Arrays of vortex-state
dots show a large variety of collective mode properties, such as positive or
negative dispersion for different modes. For their description, not only
dipolar interaction of effective magnetic dipoles, but non-dipolar terms common
to higher multipole interaction in classical electrodynamics can be important.
The dispersion relation is shown to be non-analytic as the value of the
wavevector approaches zero for all dipolar active modes of the single dot. For
vortex-state dots the interdot interaction is not weak, because, the dynamical
part (in contrast to the static magnetization of the vortex state) dot does not
contain the small parameter, the ratio of vortex core size to the dot radius.
This interaction can lead to qualitative effects like the formation of modes of
angular standing waves instead of modes with definite azimuthal number known
for the insolated vortex state dot
Kink propagation in a two-dimensional curved Josephson junction
We consider the propagation of sine-Gordon kinks in a planar curved strip as
a model of nonlinear wave propagation in curved wave guides. The homogeneous
Neumann transverse boundary conditions, in the curvilinear coordinates, allow
to assume a homogeneous kink solution. Using a simple collective variable
approach based on the kink coordinate, we show that curved regions act as
potential barriers for the wave and determine the threshold velocity for the
kink to cross. The analysis is confirmed by numerical solution of the 2D
sine-Gordon equation.Comment: 8 pages, 4 figures (2 in color
- …
