544 research outputs found

    The role of the teacher-some implications and practical suggestions for language teaching

    Get PDF
    departmental bulletin pape

    Using entanglement improves precision of quantum measurements

    Full text link
    We show how entanglement can be used to improve the estimation of an unknown transformation. Using entanglement is always of benefit, in improving either the precision or the stability of the measurement. Examples relevant for applications are illustrated, for either qubits and continuous variable

    Objective comparison of particle tracking methods

    Get PDF
    Particle tracking is of key importance for quantitative analysis of intracellular dynamic processes from time-lapse microscopy image data. Because manually detecting and following large numbers of individual particles is not feasible, automated computational methods have been developed for these tasks by many groups. Aiming to perform an objective comparison of methods, we gathered the community and organized an open competition in which participating teams applied their own methods independently to a commonly defined data set including diverse scenarios. Performance was assessed using commonly defined measures. Although no single method performed best across all scenarios, the results revealed clear differences between the various approaches, leading to notable practical conclusions for users and developers

    An Evaluation Model for Foreign Direct Investment Performance of Free Trade Port Zones

    Get PDF
    With the tendency of internationalisation and globalisation, signing regional economic agreements among multiple countries has become a trend. Under such an integration environment, some free economic zones with port transportation functions have become crucial for FDI (foreign direct investment) investors in selecting investment locations. The free trade port zone (FTPZ) is argued to be one of the most well-known. This paper aims to assess the FDI performance of FTPZs. On the basis of the FTPZ\u27s features and relevant literature, assessment criteria (ACs) are initially identified. An evaluation model based on the fuzzy AHP (Analytic Hierarchy Process) approach is then introduced to evaluate the FTPZs\u27 FDI performance from foreign investors\u27 viewpoints. Finally, the FTPZ of the Kaohsiung port in Taiwan was empirically investigated to verify the assessment model. Results point out that for the FTPZ of Kaohsiung port, ACs with higher priorities needing improvement are raw material acquired, local government efficiency, and political stability and social security. Theoretical and practical recommendations for the FTPZ managers are discussed based on the results

    Current advances and future prospects of in-situ desulfurization processes in oxy-fuel combustion reactors

    Get PDF
    Oxy-fuel circulating fluidized bed combustion is known as one of the most potent fuel combustion technologies that capture ultra-low greenhouse gases and pollutant emissions. While many investigations have been conducted for carbon capturing, the associated in-situ desulfurization process using calcium-based sorbents should also be underlined. This paper critically reviews the effects of changes in the operating environment on in-situ desulfurization processes compared to conventional air combustion. A comprehensive understanding of the process, encompassing hydrodynamic, physical and chemical aspects can be a guideline for designing the oxy-fuel combustion process with effective sulfur removal, potentially eliminating the need of a flue gas desulfurization unit. Results from thermogravimetric analyzers and morphological changes of calcium-based materials were presented to offer an insight into the sulfation mechanisms involved in the oxy-fuel circulating fluidized beds. Recently findings suggested that in-situ direct desulfurization is influenced not only by the desulfurization kinetics but also by the fluidization characteristics of calcium-based materials. Therefore, a complex reaction analysis that incorporated oxy-combustion reactions, computational fluid dynamics modeling, in-situ desulfurization reaction models and particle behavior can provide a thorough understanding of desulfurization processes across the reactor. Meanwhile, machine learning as a robust tool to predict desulfurization efficiency and improve operational flexibility should be applied with consideration of environmental improvement and economic feasibility

    Treatment for Landfill Leachate via Physicochemical Approaches: An Overview

    Get PDF
    Leachate waste consists of various mixtures of organic, inorganic, and heavy metal contaminants, which are responsible for groundwater and surface water contamination. Landfills apply physical, chemical, and biological processes for the treatment of leachate. Most studies on leachate treatment by coagulation and flocculation are based on the selection and performance of natural based biopolymers in comparison with various inorganic metal salts and grafted polymers used for the removal of contaminants. In addition, adsorption processes utilizing non-conventional activated carbons as absorbents are the current emerging focus of the researchers in leachate treatment. These adsorbents are low-in-cost, efficient, and renewable compared to conventional adsorbents. The present paper aimed to evaluate and review the technology utilising various greener approaches in coagulation, flocculation, and adsorption as the physicochemical approaches to leachate treatment. The challenges and future work regarding the development of these green products in the commercial markets were comprehensively evaluated. This work is licensed under a Creative Commons Attribution 4.0 International License
    corecore