1,648 research outputs found
Sensitivity analysis of a land surface scheme using multicriteria methods
Attempts to model surface-atmosphere interactions with greater physical realism have resulted in complex land surface schemes (LSS) with large numbers of parameters. A companion paper describes a multicriteria calibration procedure for extracting plot-scale estimates of the preferred ranges of these parameters from the various observational data sets that are now available. A complementary procedure is presented in this paper that provides an objective determination of the multicriteria sensitivity of the modeled variables to the parameters, thereby allowing the number of calibration parameters and hence the computational effort to be reduced. Two case studies are reported for the BATS model using data sets of typical quality but very different location and climatological regime (ARM-CART and Tucson). The sensitivity results were found to be consistent with the physical properties of the different environments, thereby supporting the reasonableness of the model formulation. Further, when the insensitive parameters are omitted from the calibration process, there is little degradation in the quality of the model description and little change in the preferred range of the remaining parameters. Copyright 1999 by the American Geophysical Union
Parameter estimation of a land surface scheme using multicriteria methods
Attempts to create models of surface-atmosphere interactions with greater physical realism have resulted in land surface schemes (LSS) with large numbers of parameters. The hope has been that these parameters can be assigned typical values by inspecting the literature. The potential for using the various observational data sets that are now available to extract plot-scale estimates for the parameters of a complex LSS via advanced parameter estimation methods developed for hydrological models is explored in this paper. Results are reported for two case studies using data sets of typical quality but very different location and climatological regime (ARM-CART and Tucson). The traditional single-criterion methods were found to be of limited value. However, a multicriteria approach was found to be effective in constraining the parameter estimates into physically plausible ranges when observations on at least one appropriate heat flux and one properly selected state variable are available. Copyright 1999 by the American Geophysical Union
Recommended from our members
Exploring parameter sensitivities of the land surface using a locally coupled land-atmosphere model
This paper presents a multicriteria analysis that explores the sensitivity of the land surface to changes in both land and atmospheric parameters, in terms of reproducing surface heat fluxes and ground temperature; for the land parameters, offline sensitivity analyses were also conducted for comparison to infer the influence of land-atmosphere interactions. A simple "one-at-a-time" sensitivity analysis was conducted first to filter out some insensitive parameters, followed by a multicriteria sensitivity analysis using the multiobjective generalized sensitivity analysis algorithm. The models used were the locally coupled National Center for Atmospheric Research (NCAR) single-column community climate model and the offline NCAR land surface model, driven and evaluated by a summer intensive operational periods (IOP) data set from the southern Great Plains. As expected, the results show that land-atmosphere interactions (with or without land-atmosphere parameter interactions) can have significant influences on the sensitivity of the land surface to changes in the land parameters, and the single-criterion sensitivities can be significantly different from the multicriteria sensitivity. These findings are mostly model and data independent and can be generally useful, regardless of the model/data dependence of the sensitivities of individual parameters. The exceptionally high sensitivities of the selected atmospheric parameters in a multicriteria sense (and in particular for latent heat) appeal for adequate attention to the specification of effective values of these parameters in an atmospheric model. Overall, this study proposes an effective framework of multicriteria sensitivity analysis beneficial to future studies in the development and parameter estimation of other complex (offline or coupled) land surface models. Copyright 2004 by the American Geophysical Union
Recommended from our members
Parameter sensitivity analysis for different complexity land surface models using multicriteria methods
A multicriteria algorithm, the MultiObjective Generalized Sensitivity Analysis (MOGSA), was used to investigate the parameter sensitivity of five different land surface models with increasing levels of complexity in the physical representation of the vegetation (BUCKET, CHASM, BATS 1, Noah, and BATS 2) at five different sites representing crop land/ pasture, grassland, rain forest, cropland, and semidesert areas. The methodology allows for the inclusion of parameter interaction and does not require assumptions of independence between parameters, while at the same time allowing for the ranking of several single-criterion and a global multicriteria sensitivity indices. The analysis required on the order of 50 thousand model runs. The results confirm that parameters with similar "physical meaning" across different model structures behave in different ways depending on the model and the locations. It is also shown that after a certain level an increase in model structure complexity does not necessarily lead to better parameter identifiability, i.e., higher sensitivity, and that a certain level of overparameterization is observed. For the case of the BATS 1 and BATS 2 models, with essentially the same model structure but a more sophisticated vegetation model, paradoxically, the effect on parameter sensitivity is mainly reflected in the sensitivity of the soil-related parameter. Copyright 2006 by the American Geophysical Union
Recommended from our members
A preliminary synthesis of major scientific results during the SALSA program
The objective of this paper is to provide an overview of the primary results of the Semi-Arid Land-Surface-Atmosphere (SALSA) Program in the context of improvements to our overall understanding of hydrologic, ecologic, and atmospheric processes and their interactions in a semi-arid basin. The major findings and future research needs associated with the different core components of the program are emphasized. First, remote-sensing investigations are discussed, especially those directed toward taking full advantage of the capabilities of the new generation of satellites (ERS2/ATSR2, VEGETATION, LANDSAT7, NASA-EOS). Second, we discuss parameterization of the water and energy fluxes in arid and semi-arid regions, with special emphasis on methods to aggregate these fluxes from patch scale to grid scale. Third, we address the issues related to grassland ecology and competition for water between native grass and invasive mesquite species. Fourth, findings related to the interactions between surface water, ground water, and vegetation in a semi-arid riparian system are discussed. Next, an assessment of land use and land cover change over the entire basin over a quarter century is reviewed. Finally, unsolved issues and the needs for further research are outlined
Thermomechanical relaxation and different water states in cottonseed protein derived bioplastics
Thermomechanical relaxation events and different water states in cottonseed protein bioplastics are presented whilst investigating the effects of aldehyde cross-linking agents. Thermomechanical relaxation of cottonseed protein bioplastics associated with protein denaturation, moisture absorption and broad glass transitions (Tg) were observed from DSC and DMA measurements. It was shown that variation of the aldehyde influences the storage modulus at very low temperature (below Tg). From measurements of the water fusion point, enthalpy, vaporisation, and weight loss, three water states in the water-absorbed bioplastics are suggested; namely strongly-bound-to-polymer, weakly-bound-to-polymer and bulk-like water. The water content and unreacted cross-linking agents are influential factors in controlling formation of the different water states, whilst the selection of different aldehydes was found to be negligible. These results could be valuable for adjusting the thermomechanical relaxations of protein based bioplastics, and tailoring their properties in wet environments
Bio-based polymer nanocomposites based on nylon 11 and WS2 inorganic nanotubes
Tungsten disulphide nanotubes (INT-WS2) have been successfully dispersed in a bio-based polyamide matrix (nylon 11) by conventional melt processing. The effect of INT-WS2 content on the morphology, thermal stability, crystallization behaviour and dynamic mechanical properties is investigated. The results indicate that these inorganic nanotubes can be efficiently incorporated into the bio-based polymer matrix without the need for modifiers or surfactants. Additionally, it is found that the non-isothermal crystallization behaviour of nylon 11/INT-WS2 depends on both the cooling rate and INT-WS2 concentration. In particular, crystallization kinetics results demonstrate that the nucleating activity of INTs plays a dominant role in accelerating the crystallization of nylon 11. This fact leads to the appearance of the more-disordered phase at higher temperature. More significantly, it was shown that these INT-WS2 nanocomposites can facilitate a good processability and cost efficiency, and will be of interest for many eco-friendly and medical applications
Adenovirus: an emerging factor in red squirrel Sciurus vulgaris conservation
1. Adenovirus is an emerging threat to red squirrel Sciurus vulgaris conservation, but confirming clinically significant adenovirus infections in red squirrels is challenging. Rapid intestinal autolysis after death in wild animals frequently obscures pathology characteristic of the disease in animals found dead.
2. We review the available literature to determine current understanding of both subclinical and clinically significant adenovirus infections in free-living wild and captive red squirrel populations.
3. Benefits of scientific testing for adenovirus incorporating both transmission electron microscopy (TEM) and polymerase chain reaction (PCR) technologies are compared and contrasted. We favour viral particle detection using TEM in animals exhibiting enteropathy at post-mortem and the use of PCR to detect subclinical cases where no enteric abnormalities are observed.
4. Adenoviral infections associated with re-introduction studies are evaluated by examination of sporadic cases in wild populations and of data from captive collections used to service such studies.
5. The paucity of data available on adenovirus infection in grey squirrel Sciurus carolinensis populations is documented, and we highlight that although subclinical virus presence is recorded in several locations in Great Britain and in Italy, no clinically significant disease cases have been detected in the species thus far.
6. Current speculation about potential interspecific infection between sciurids and other woodland rodents such as wood mice Apodemus sylvaticus is examined. Where subclinical adenovirus presence has been detected in sympatric populations using the same point food sources, husbandry methods may be used to diminish the potential for cross-infection.
7. Our findings highlight the importance of controlling disease in red squirrel populations by using clearly defined scientific methods. In addition, we propose hypothetical conservation benefits of restricting contact rates between red squirrels and sympatric grey squirrels and of limiting competition from other woodland rodent species
The continuum of spreading depolarizations in acute cortical lesion development: Examining Leao's legacy.
A modern understanding of how cerebral cortical lesions develop after acute brain injury is based on Aristides Leao's historic discoveries of spreading depression and asphyxial/anoxic depolarization. Treated as separate entities for decades, we now appreciate that these events define a continuum of spreading mass depolarizations, a concept that is central to understanding their pathologic effects. Within minutes of acute severe ischemia, the onset of persistent depolarization triggers the breakdown of ion homeostasis and development of cytotoxic edema. These persistent changes are diagnosed as diffusion restriction in magnetic resonance imaging and define the ischemic core. In delayed lesion growth, transient spreading depolarizations arise spontaneously in the ischemic penumbra and induce further persistent depolarization and excitotoxic damage, progressively expanding the ischemic core. The causal role of these waves in lesion development has been proven by real-time monitoring of electrophysiology, blood flow, and cytotoxic edema. The spreading depolarization continuum further applies to other models of acute cortical lesions, suggesting that it is a universal principle of cortical lesion development. These pathophysiologic concepts establish a working hypothesis for translation to human disease, where complex patterns of depolarizations are observed in acute brain injury and appear to mediate and signal ongoing secondary damage
- …
