17 research outputs found

    SUDA: A SUrface Dust Analyser for Compositional Mapping of the Galilean Moon Europa

    Get PDF
    The Surface Dust Analyser (SUDA) is a mass spectrometer onboard the Europa Clipper mission for investigating the surface composition of the Galilean moon Europa. Atmosphereless planetary moons such as the Galilean satellites are wrapped into a ballistic dust exosphere populated by tiny samples from the moon’s surface produced by impacts of fast micrometeoroids. SUDA will measure the composition of such surface ejecta during close flybys of Europa to obtain key chemical signatures for revealing the satellite’s composition such as organic molecules and salts, history, and geological evolution. Because of their ballistic orbits, detected ejecta can be traced back to the surface with a spatial resolution roughly equal to the instantaneous altitude of the spacecraft. SUDA is a Time-Of-Flight (TOF), reflectron-type impact mass spectrometer, optimized for a high mass resolution which only weakly depends on the impact location. The instrument will measure the mass, speed, charge, elemental, molecular, and isotopic composition of impacting grains. The instrument’s small size of 268mm×250mm×171mm, radiation-hard design, and rather large sensitive area of 220 cm 2 matches well the challenging demands of the Clipper mission

    Close Cassini flybys of Saturn's ring moons Pan, Daphnis, Atlas, Pandora, and Epimetheus

    Get PDF
    Saturn’s main ring system is associated with a set of small moons that are either embedded within it, or interact with the rings to alter their shape and composition. Five close flybys of the moons Pan, Daphnis, Atlas, Pandora, and Epimetheus were performed between December 2016 and April 2017 during the Ring-grazing Orbits of the Cassini mission. Data on the moons’ morphology, structure, particle environment, and composition were returned, along with images in the ultraviolet and thermal infrared. The optical properties of the moons’ surfaces are determined by two competing processes: contamination by a red material formed in Saturn’s main ring system, and by accretion of bright icy particles or water vapor from volcanic plumes originating on the planet’s moon Enceladus

    Instrument concept of a single channel dust trajectory detector

    No full text
    Charged dust particles in space can be detected by in situ sensors using charge induction. Such trajectory sensors are normally based on many grid or wire electrodes connected to individual charge sensitive amplifiers. In this article we describe a new approach to measure the trajectory of a charged dust particle by a single charge sensitive amplifier. The signal shape is used to calculate particle speed, mass and trajectory. The detector employs two half-circular grid electrodes, and the electrodes are connected to the differential input stage of an amplifier. Simulations using the Coulomb 9.0 software package were performed in order to determine the expected signal shapes depending on the particle parameters (entry location and incident angles). The simulated charge signals show, that the chosen measurement concept is an efficient method for low-power and low-mass dust trajectory sensors. (C) 2017 COSPAR. Published by Elsevier Ltd. All rights reserved

    Sortase A-Cleavable CD1d Identifies Sphingomyelins as Major Class of CD1d-Associated Lipids.

    No full text
    CD1d is an atypical MHC class I molecule which binds endogenous and exogenous lipids and can activate natural killer T (NKT) cells through the presentation of lipid antigens. CD1d surveys different cellular compartments including the secretory and the endolysosomal pathway and broadly binds lipids through its two hydrophobic pockets. Purification of the transmembrane protein CD1d for the analysis of bound lipids is technically challenging as the use of detergents releases CD1d-bound lipids. To address these challenges, we have developed a novel approach based on Sortase A-dependent enzymatic release of CD1d at the cell surface of live mammalian cells, which allows for single step release and affinity tagging of CD1d for shotgun lipidomics. Using this system, we demonstrate that CD1d carrying the Sortase A recognition motif shows unimpaired subcellular trafficking through the secretory and endolysosomal pathway and is able to load lipids in these compartments and present them to NKT cells. Comprehensive shotgun lipidomics demonstrated that the spectrum and abundance of CD1d-associated lipids is not representative of the total cellular lipidome but rather characterized by preferential binding to long chain sphingolipids and glycerophospholipids. As such, sphingomyelin species recently identified as critical negative regulators of NKT cell activation, represented the vast majority of endogenous CD1d-associated lipids. Moreover, we observed that inhibition of endolysosomal trafficking of CD1d surprisingly did not affect the spectrum of CD1d-bound lipids, suggesting that the majority of endogenous CD1d-associated lipids load onto CD1d in the secretory rather than the endolysosomal pathway. In conclusion, we present a novel system for the analysis of CD1d-bound lipids in mammalian cells and provide new insight into the spectrum of CD1d-associated lipids, with important functional implications for NKT cell activation

    Close Cassini flybys of Saturn’s ring moons Pan, Daphnis, Atlas, Pandora, and Epimetheus

    Get PDF
    Saturn’s main ring system is associated with a set of small moons that are either embedded within it, or interact with the rings to alter their shape and composition. Five close flybys of the moons Pan, Daphnis, Atlas, Pandora, and Epimetheus were performed between December 2016 and April 2017 during the Ring-grazing Orbits of the Cassini mission. Data on the moons’ morphology, structure, particle environment, and composition were returned, along with images in the ultraviolet and thermal infrared. The optical properties of the moons’ surfaces are determined by two competing processes: contamination by a red material formed in Saturn’s main ring system, and by accretion of bright icy particles or water vapor from volcanic plumes originating on the planet’s moon Enceladus

    Close Cassini flybys of Saturn’s ring moons Pan, Daphnis, Atlas, Pandora, and Epimetheus

    Full text link
    Cassini's last look at Saturn's rings During the final stages of the Cassini mission, the spacecraft flew between the planet and its rings, providing a new view on this spectacular system (see the Perspective by Ida). Setting the scene, Spilker reviews the numerous discoveries made using Cassini during the 13 years it spent orbiting Saturn. Iess et al. measured the gravitational pull on Cassini, separating the contributions from the planet and the rings. This allowed them to determine the interior structure of Saturn and the mass of its rings. Buratti et al. present observations of five small moons located in and around the rings. The moons each have distinctive shapes and compositions, owing to accretion of ring material. Tiscareno et al. observed the rings directly at close range, finding complex features sculpted by the gravitational interactions between moons and ring particles. Together, these results show that Saturn's rings are substantially younger than the planet itself and constrain models of their origin. Science , this issue p. 1046 , p. eaat2965 , p. eaat2349 , p. eaau1017 ; see also p. 1028 </jats:p
    corecore