3,837 research outputs found
A superconducting absolute spin valve
A superconductor with a spin-split excitation spectrum behaves as an ideal
ferromagnetic spin-injector in a tunneling junction. It was theoretical
predicted that the combination of two such spin-split superconductors with
independently tunable magnetizations, may be used as an ideal
spin-valve. Here we report on the first switchable superconducting spin-valve
based on two EuS/Al bilayers coupled through an aluminum oxide tunnel barrier.
The spin-valve shows a relative resistance change between the parallel and
antiparallel configuration of the EuS layers up to 900% that demonstrates a
highly spin-polarized currents through the junction. Our device may be pivotal
for realization of thermoelectric radiation detectors, logical element for a
memory cell in cryogenics superconductor-based computers and superconducting
spintronics in general.Comment: 6 pages, 4 color figures, 1 tabl
Polar molecule reactive collisions in quasi-1D systems
We study polar molecule scattering in quasi-one-dimensional geometries.
Elastic and reactive collision rates are computed as a function of collision
energy and electric dipole moment for different confinement strengths. The
numerical results are interpreted in terms of first order scattering and of
adiabatic models. Universal dipolar scattering is also discussed. Our results
are relevant to experiments where control of the collision dynamics through one
dimensional confinement and an applied electric field is envisioned.Comment: 25 pages, 13 figure
Analysis of the absorption and emission spectra of U4+ in α-ThBr 4
The low temperature form α-ThBr4 has a scheelite structure I41/a in which the tetravalent uranium occupies the thorium site which is S4. Assuming that the ground state remains Γ 4 as in the β-ThBr4 form, the polarized absorption spectrum at 4.2 K shows that D2d is a good approximation. A peculiarity of this host is the exaltation of very numerous fluorescences of U4+ which permit to assign four Stark levels of the ground state 3H4 : Γ5 at 110 cm-1, Γ 1 at 473 cm-1, Γ1 at 623 cm-1 and Γ5 at 830 cm-1. 30 levels have been assigned and the crystal field parameters of U4+ (5f2) have been calculated in the D2d approximation : B20 = - 382, B40 = - 3 262, B44 = - 1734, B60 = - 851 and B64 = - 1828 cm-1. It is interesting to note that a small distortion in the scheelite structure of the α-ThBr4 compared with the zircon structure β-ThBr4 induces important changes in the crystal field parameters
Atmospheric circulation patterns, cloud-to-ground lightning, and locally intense convective rainfall associated with debris flow initiation in the Dolomite Alps of northeastern Italy
The Dolomite Alps of northeastern Italy experience debris flows with great
frequency during the summer months. An ample supply of unconsolidated
material on steep slopes and a summer season climate regime characterized by
recurrent thunderstorms combine to produce an abundance of these destructive
hydro-geologic events. In the past, debris flow events have been studied
primarily in the context of their geologic and geomorphic characteristics.
The atmospheric contribution to these mass-wasting events has been limited
to recording rainfall and developing intensity thresholds for debris
mobilization. This study aims to expand the examination of atmospheric
processes that preceded both locally intense convective rainfall (LICR) and
debris flows in the Dolomite region. 500 hPa pressure level plots of
geopotential heights were constructed for a period of 3 days prior to
debris flow events to gain insight into the synoptic-scale processes which
provide an environment conducive to LICR in the Dolomites. Cloud-to-ground (CG)
lightning flash data recorded at the meso-scale were incorporated to
assess the convective environment proximal to debris flow source regions.
Twelve events were analyzed and from this analysis three common synoptic-scale circulation patterns were identified. Evaluation of CG flashes at
smaller spatial and temporal scales illustrated that convective processes
vary in their production of CF flashes (total number) and the spatial
distribution of flashes can also be quite different between events over
longer periods. During the 60 min interval immediately preceding debris
flow a majority of cases exhibited spatial and temporal colocation of LICR
and CG flashes. Also a number of CG flash parameters were found to be
significantly correlated to rainfall intensity prior to debris flow initiation
Optical supercavitation in soft-matter
We investigate theoretically, numerically and experimentally nonlinear
optical waves in an absorbing out-of-equilibrium colloidal material at the
gelification transition. At sufficiently high optical intensity, absorption is
frustrated and light propagates into the medium. The process is mediated by the
formation of a matter-shock wave due to optically induced thermodiffusion, and
largely resembles the mechanism of hydrodynamical supercavitation, as it is
accompanied by a dynamic phase-transition region between the beam and the
absorbing material.Comment: 4 pages, 5 figures, revised version: corrected typos and reference
I NEMATODI COME BIOINDICATORI PER LA VALUTAZIONE DELLA FUNZIONALITÀ DEL SUOLO IN AREE DEGRADATE DI VIGNETI ITALIANI
In viticoltura, la non corretta preparazione del terreno prima dell’impianto comporta la formazione di aree degradate caratterizzate da scarsa produzione e la presenza di piante più suscettibili a fitoparassiti e fitopatologie. Le cause del malfunzionamento del suolo possono essere imputate alla riduzione del contributo della fauna del suolo e dei servizi ecosistemici a essa legati come il ciclo dei nutrienti, l’impoverimento nel contenuto di sostanza organica, alterazione del pH, il deficit idrico e la compattazione del suolo.
ReSolVe è un progetto transnazionale, finanziato dal programma Core-Organic+, finalizzato a valutare gli effetti di tre diverse tecniche agronomiche per il ripristino della funzionalità ottimale in aree degradate di vigneti biologici.
Ante trattamento, i più alti valori di abbondanza di individui e ricchezza di famiglie sono stati rilevati nell’area non degradata di ambedue i siti. Gli indici bio-qualitativi hanno evidenziato un ambiente degradato con dominanza di specie generaliste e colonizzatrici. I nematodi batteriofagi erano predominanti nelle aree degradate, mentre i fitoparassiti nelle aree non degradate. L’abbondanza di nematodi fungivori e predatori è stata bassa in ambo i siti
Multichannel quantum-defect theory for ultracold atom-ion collisions
We develop an analytical model for ultracold atom-ion collisions using the
multichannel quantum-defect formalism. The model is based on the analytical
solutions of the r^-4 long-range potential and on the application of a frame
transformation between asymptotic and molecular bases. This approach allows the
description of the atom-ion interaction in the ultracold domain in terms of
three parameters only: the singlet and triplet scattering lengths, assumed to
be independent of the relative motion angular momentum, and the lead dispersion
coefficient of the asymptotic potential. We also introduce corrections to the
scattering lengths that improve the accuracy of our quantum-defect model for
higher order partial waves, a particularly important result for an accurate
description of shape and Feshbach resonances at finite temperature. The theory
is applied to the system composed of a 40Ca+ ion and a Na atom, and compared to
numerical coupled-channel calculations carried out using ab initio potentials.
For this particular system, we investigate the spectrum of bound states, the
rate of charge-transfer processes, and the collision rates in the presence of
magnetic Feshbach resonances at zero and finite temperature.Comment: 39 pages, 21 figure
- …
