60 research outputs found

    An Efficient Gabor Walsh-Hadamard Transform Based Approach for Retrieving Brain Tumor Images from MRI

    Get PDF
    Brain tumors are a serious and death-defying disease for human life. Discovering an appropriate brain tumor image from a magnetic resonance imaging (MRI) archive is a challenging job for the radiologist. Most search engines retrieve images on the basis of traditional text-based approaches. The main challenge in the MRI image analysis is that low-level visual information captured by the MRI machine and the high-level information identified by the assessor. This semantic gap is addressed in this study by designing a new feature extraction technique. In this paper, we introduce Content-Based Medical Image retrieval (CBMIR) system for retrieval of brain tumor images from the large data. Firstly, we remove noise from MRI images employing several filtering techniques. Afterward, we design a feature extraction scheme combining Gabor filtering technique (which is mainly focused on specific frequency content at the image region) and Walsh-Hadamard transform (WHT) (conquer technique for easy configuration of image) for discovering representative features from MRI images. After that, for retrieving the accurate and reliable image, we employ Fuzzy C-Means clustering Minkowski distance metric that can evaluate the similarity between the query image and database images. The proposed methodology design was tested on a publicly available brain tumor MRI image database. The experimental results demonstrate that our proposed approach outperforms most of the existing techniques like Gabor, wavelet, and Hough transform in detecting brain tumors and also take less time. The proposed approach will be beneficial for radiologists and also for technologists to build an automatic decision support system that will produce reproducible and objective results with high accuracy

    A novel selection of optimal statistical features in the DWPT domain for discrimination of ictal and seizure-free electroencephalography signals

    Get PDF
    Properly determining the discriminative features which characterize the inherent behaviors of electroencephalography (EEG) signals remains a great challenge for epileptic seizure detection. In this present study, a novel feature selection scheme based on the discrete wavelet packet decomposition and cuckoo search algorithm (CSA) was proposed. The normal as well as epileptic EEG recordings were frst decomposed into various frequency bands by means of wavelet packet decomposition, and subsequently, statistical features at all developed nodes in the wavelet packet decomposition tree were derived. Instead of using the complete set of the extracted features to construct a wavelet neural networks-based classifer, an optimal feature subset that maximizes the predictive competence of the classifer was selected by using the CSA. Experimental results on the publicly available benchmarks demonstrated that the proposed feature subset selection scheme achieved promising recognition accuracies of 98.43–100%, and the results were statistically signifcant using z-test with p value <0.0001

    A new way of channel selection in the motor imagery classification for BCI applications

    No full text
    Nowadays, motor imagery classification in electroencephalography (EEG) based brain computer interface (BCI) systems is a very important research topic in the study of brain science. As EEG contains multi-channel EEG recordings with huge amount of data, it is sometimes very challenging to extract more representative information from original EEG data for efficient classification of motor imagery (MI) tasks. Thus, it is necessary to diminish the redundant information from the original EEG signal selecting appropriate channels and also to reduce computational cost. Addressing this problem, we intend to develop a methodology based on channel selection for classification of MI tasks in the BCI applications. In this study, we introduce a new way of channel selection considering anatomical and functional structural of the human brain and also investigate its impact in the classification performance. In this proposed method, at first we select the channels from motor cortex area, and then decompose EEG signals using wavelet energy function into several bands of real and imaginary coefficients. The relevant band’s coefficient energy has been used as feature vector in this research. After that, the extracted features are tested by three popular machine learning method: Linear Discriminant Analysis (LDA), Support Vector Machine (SVM) and K-Nearest Neighbour (KNN). The method is evaluated on a benchmark dataset IVa (BCI competition III) and the results demonstrate classification improvement with less computational cost over the existing methods

    Efficient approach for EEG‐based emotion recognition

    Full text link

    Epileptic seizures detection in EEGs blending frequency domain with information gain technique

    No full text
    This paper proposes a new algorithm which combines the information in frequency domain with the Information Gain (InfoGain) technique for the detection of epileptic seizures from electroencephalogram (EEG) data. The proposed method consists of four main steps. Firstly, in order to investigate which method is most suitable to decompose the EEG signals into frequency bands, we implement separately a fast Fourier transform (FFT) or discrete wavelet transform (DWT). Secondly, each band is partitioned into k windows and a set of statistical features are extracted from each window. Thirdly, the InfoGain is used to rank the extracted features and the most important ones are selected. Lastly, these features are forwarded to a least square support vector machine (LS-SVM) classifier to classify the EEG. This scheme is implemented and tested on a benchmark EEG database and also compared with other existing methods, based on some performance evaluation measures. The experimental results show that the proposed FFT combined with InfoGain method can generate better performance than the DWT method. This method achieves 100% accuracy for five different pairs: healthy people with eyes open (z) versus epileptic patients with activity seizures (s); healthy people with eyes closed (o) versus s; epileptic patients with free seizures (n) versus s; patients with free seizures epileptic (f) versus s; and z versus o. The accuracies obtained for two other pairs, (o vs. n) and (z vs. f), are 95.62 and 88.32%, respectively. These two pairs have more similarities with each other, leading to a lower level of accuracy. The proposed approach outperforms six other reported methods and achieves an 11.9% improvement. Finally, it can be concluded that the proposed FFT combined with InfoGain method has the capacity to detect epileptic seizures in EEG most effectively

    Diagnosis of autism spectrum disorder from EEG using a time–frequency spectrogram image‐based approach

    Full text link

    A new framework for classification of multi-category hand grasps using EMG signals

    No full text
    Electromyogram (EMG) signals have had a great impact on many applications, including prosthetic or rehabilitation devices, human-machine interactions, clinical and biomedical areas. In recent years, EMG signals have been used as a popular tool to generate device control commands for rehabilitation equipment, such as robotic prostheses. This intention of this study was to design an EMG signal-based expert model for hand-grasp classification that could enhance prosthetic hand movements for people with disabilities. The study, thus, aimed to introduce an innovative framework for recognising hand movements using EMG signals. The proposed framework consists of logarithmic spectrogram-based graph signal (LSGS), AdaBoost k-means (AB-k-means) and an ensemble of feature selection (FS) techniques. First, the LSGS model is applied to analyse and extract the desirable features from EMG signals. Then, to assist in selecting the most influential features, an ensemble FS is added to the design. Finally, in the classification phase, a novel classification model, named AB-k-means, is developed to classify the selected EMG features into different hand grasps. The proposed hybrid model, LSGS-based scheme is evaluated with a publicly available EMG hand movement dataset from the UCI repository. Using the same dataset, the LSGS-AB-k-means design model is also benchmarked with several classifications including the state-of-the-art algorithms. The results demonstrate that the proposed model achieves a high classification rate and demonstrates superior results compared to several previous research works. This study, therefore, establishes that the proposed model can accurately classify EMG hand grasps and can be implemented as a control unit with low cost and a high classification rate

    Clustering technique-based least square support vector machine for EEG signal classification

    No full text
    This paper presents a new approach called clustering technique-based least square support vector machine (CT-LS-SVM) for the classification of EEG signals. Decision making is performed in two stages. In the first stage, clustering technique (CT) has been used to extract representative features of EEG data. In the second stage, least square support vector machine (LS-SVM) is applied to the extracted features to classify two-class EEG signals. To demonstrate the effectiveness of the proposed method, several experiments have been conducted on three publicly available benchmark databases, one for epileptic EEG data, one for mental imagery tasks EEG data and another one for motor imagery EEG data. Our proposed approach achieves an average sensitivity, specificity and classification accuracy of 94.92%, 93.44% and 94.18%, respectively, for the epileptic EEG data; 83.98%, 84.37% and 84.17% respectively, for the motor imagery EEG data; and 64.61%, 58.77% and 61.69%, respectively, for the mental imagery tasks EEG data. The performance of the CT-LS-SVM algorithm is compared in terms of classification accuracy and execution (running) time with our previous study where simple random sampling with a least square support vector machine (SRS-LS-SVM) was employed for EEG signal classification. We also compare the proposed method with other existing methods in the literature for the three databases. The experimental results show that the proposed algorithm can produce a better classification rate than the previous reported methods and takes much less execution time compared to the SRS-LS-SVM technique. The research findings in this paper indicate that the proposed approach is very efficient for classification of two-class EEG signals
    corecore