2,440 research outputs found
Acoustic Integrity Codes: Secure Device Pairing Using Short-Range Acoustic Communication
Secure Device Pairing (SDP) relies on an out-of-band channel to authenticate
devices. This requires a common hardware interface, which limits the use of
existing SDP systems. We propose to use short-range acoustic communication for
the initial pairing. Audio hardware is commonly available on existing
off-the-shelf devices and can be accessed from user space without requiring
firmware or hardware modifications. We improve upon previous approaches by
designing Acoustic Integrity Codes (AICs): a modulation scheme that provides
message authentication on the acoustic physical layer. We analyze their
security and demonstrate that we can defend against signal cancellation attacks
by designing signals with low autocorrelation. Our system can detect
overshadowing attacks using a ternary decision function with a threshold. In
our evaluation of this SDP scheme's security and robustness, we achieve a bit
error ratio below 0.1% for a net bit rate of 100 bps with a signal-to-noise
ratio (SNR) of 14 dB. Using our open-source proof-of-concept implementation on
Android smartphones, we demonstrate pairing between different smartphone
models.Comment: 11 pages, 11 figures. Published at ACM WiSec 2020 (13th ACM
Conference on Security and Privacy in Wireless and Mobile Networks). Updated
reference
Whole genome sequences of two Salmonella Dublin strains harbour viaA, viaB and ompB loci of the Vi antigen
Here we report the genome sequence of two Salmonella enterica serovar Dublin, 03EB8736SAL and 03EB8994SAL, isolated from raw milk cheese and filter of milk respectively. Analysis of draft genomes of the two isolates reveals the presence of viaA, viaB and ompB loci of the Vi capsular polysaccharide antigen (Vi antigen)
Modeling and investigative studies of Jovian low frequency emissions
Jovian decametric (DAM) and hectometric (HOM) emissions were first observed over the entire spectrum by the Voyager 1 and 2 flybys of the planet. They display unusual arc-like structures on frequency-versus-time spectrograms. Software for the modeling of the Jovian plasma and magnetic field environment was performed. In addition, an extensive library of programs was developed for the retrieval of Voyager Planetary Radio Astronomy (PRA) data in both the high and low frequency bands from new noise-free, recalibrated data tapes. This software allows the option of retrieving data sorted with respect to particular sub-Io longitudes. This has proven to be invaluable in the analyses of the data. Graphics routines were also developed to display the data on color spectrograms
Using Spontaneous Emission of a Qubit as a Resource for Feedback Control
Persistent control of a transmon qubit is performed by a feedback protocol
based on continuous heterodyne measurement of its fluorescence. By driving the
qubit and cavity with microwave signals whose amplitudes depend linearly on the
instantaneous values of the quadratures of the measured fluorescence field, we
show that it is possible to stabilize permanently the qubit in any targeted
state. Using a Josephson mixer as a phase-preserving amplifier, it was possible
to reach a total measurement efficiency =35%, leading to a maximum of 59%
of excitation and 44% of coherence for the stabilized states. The experiment
demonstrates multiple-input multiple-output analog Markovian feedback in the
quantum regime.Comment: Supplementary material can be found as an ancillary objec
NMR Imaging of low pressure, gas-phase transport in packed beds using hyperpolarized xenon-129
Gas-phase magnetic resonance imaging (MRI) has been used to investigate heterogeneity in mass transport in a packed bed of commercial, alumina, catalyst supports. Hyperpolarized 129Xe MRI enables study of transient diffusion for micro- scopic porous systems using xenon chemical shift to selectively image gas within the pores, and, thence, permits study of low-density, gas-phase mass-transport, such that diffusion can be studied in the Knudsen regime, and not just the molecular regime, which is the limitation with other current techniques. Knudsen-regime diffusion is common in many industrial, catalytic processes. Significantly, larger spatial variability in mass transport rates across the packed bed was found compared to techniques using only molecular diffusion. It has thus been found that that these heterogeneities arise over length-scales much larger tha
Measurement of the Partial Cross Sections s(TT), s(LT) and [s(T)+epsilon*s(L)] of the p(e,e' pi+)n Reaction in the Delta(1232) Resonance
We report new precision p(e,e' pi+})n measurements in the Delta(1232)
resonance at Q2 = 0.127(GeV/c)2 obtained at the MIT-Bates Out-Of-Plane
scattering facility. These are the lowest, but non-zero, Q2 measurements in the
pi+ channel. The data offer new tests of the theoretical calculations,
particularly of the background amplitude contributions. The chiral effective
field theory and Sato-Lee model calculations are not in agreement with this
experiment
Measurements of the Generalized Electric and Magnetic Polarizabilities of the Proton at Low Q2 Using the VCS Reaction
The mean square polarizability radii of the proton have been measured for the
first time in a virtual Compton scattering experiment performed at the
MIT-Bates out-of-plane scattering facility. Response functions and
polarizabilities obtained from a dispersion analysis of the data at Q2=0.06
GeV2/c2 are in agreement with O(p3) heavy baryon chiral perturbation theory.
The data support the dominance of mesonic effects in the polarizabilities, and
the increase of beta with increasing Q2 is evidence for the cancellation of
long-range diamagnetism by short-range paramagnetism from the pion cloud
Investigation of the conjectured nucleon deformation at low momentum transfer
We report new precise H measurements at the
resonance at (GeV/c) using the MIT/Bates
out-of-plane scattering (OOPS) facility. The data reported here are
particularly sensitive to the transverse electric amplitude () of the
transition. Analyzed together with previous data yield
precise quadrupole to dipole amplitude ratios and and
for . They give credence to the conjecture of
deformation in hadronic systems favoring, at low , the dominance of
mesonic effects.Comment: 4 pages, 1figur
Pathway to cryogen free production of hyperpolarized krypton-83 and xenon-129
yperpolarized (hp) 129Xe and hp 83Kr for magnetic resonance imaging (MRI) are typically obtained through spin-exchange
optical pumping (SEOP) in gas mixtures with dilute concentrations of the respective noble gas. The usage of dilute noble gases mixtures requires cryogenic gas separation after SEOP, a step that makes clinical and preclinical applications of hp 129Xe MRI cumbersome. For hp 83Kr MRI, cryogenic concentration is not practical due to depolarization that is caused by quadrupolar relaxation in the condensed phase. In this work, the concept of stopped flow SEOP with concentrated noble gas mixtures at low pressures was explored using a laser with 23.3 W of output power and 0.25 nm linewidth. For 129Xe SEOP without cryogenic separation, the highest obtained MR signal intensity from the hp xenon-nitrogen gas mixture was
equivalent to that arising from 15.561.9% spin polarized 129Xe in pure xenon gas. The production rate of the hp gas
mixture, measured at 298 K, was 1.8 cm3/min. For hp 83Kr, the equivalent of 4.460.5% spin polarization in pure krypton at a production rate of 2 cm3/min was produced. The general dependency of spin polarization upon gas pressure obtained in stopped flow SEOP is reported for various noble gas concentrations. Aspects of SEOP specific to the two noble gas isotopes are discussed and compared with current theoretical opinions. A non-linear pressure broadening of the Rb D1 transition was observed and taken into account for the qualitative description of the SEOP process
A model for decoherence of entangled beauty
In the context of the entangled state produced at the
resonance, we consider a modification of the usual
quantum-mechanical time evolution with a dissipative term, which contains only
one parameter denoted by and respects complete positivity. In this
way a decoherence effect is introduced in the time evolution of the 2-particle
state, which becomes stronger with increasing distance between
the two particles. While our model of time evolution has decoherence for the
2-particle system, we assume that, after the decay of one of the two B mesons,
the resulting 1-particle state obeys the purely quantum-mechanical time
evolution. From the data on dilepton events we derive an upper bound on
. We also show how is related to the so-called ``decoherence
parameter'' , which parameterizes decoherence in neutral flavoured
meson--antimeson systems.Comment: 11 pages, revtex. Two references and some comments added, version to
be published in Phys. Rev.
- …
