175 research outputs found
Increase in the random dopant induced threshold fluctuations and lowering in sub-100 nm MOSFETs due to quantum effects: a 3-D density-gradient simulation study
In this paper, we present a detailed simulation study of the influence of quantum mechanical effects in the inversion layer on random dopant induced threshold voltage fluctuations and lowering in sub-100 mn MOSFETs. The simulations have been performed using a three-dimensional (3-D) implementation of the density gradient (DG) formalism incorporated in our established 3-D atomistic simulation approach. This results in a self-consistent 3-D quantum mechanical picture, which implies not only the vertical inversion layer quantization but also the lateral confinement effects related to current filamentation in the “valleys” of the random potential fluctuations. We have shown that the net result of including quantum mechanical effects, while considering statistical dopant fluctuations, is an increase in both threshold voltage fluctuations and lowering. At the same time, the random dopant induced threshold voltage lowering partially compensates for the quantum mechanical threshold voltage shift in aggressively scaled MOSFETs with ultrathin gate oxides
Simulation of intrinsic parameter fluctuations in decananometer and nanometer-scale MOSFETs
Intrinsic parameter fluctuations introduced by discreteness of charge and matter will play an increasingly important role when semiconductor devices are scaled to decananometer and nanometer dimensions in next-generation integrated circuits and systems. In this paper, we review the analytical and the numerical simulation techniques used to study and predict such intrinsic parameters fluctuations. We consider random discrete dopants, trapped charges, atomic-scale interface roughness, and line edge roughness as sources of intrinsic parameter fluctuations. The presented theoretical approach based on Green's functions is restricted to the case of random discrete charges. The numerical simulation approaches based on the drift diffusion approximation with density gradient quantum corrections covers all of the listed sources of fluctuations. The results show that the intrinsic fluctuations in conventional MOSFETs, and later in double gate architectures, will reach levels that will affect the yield and the functionality of the next generation analog and digital circuits unless appropriate changes to the design are made. The future challenges that have to be addressed in order to improve the accuracy and the predictive power of the intrinsic fluctuation simulations are also discussed
Quantum Mechanical Enhancement of Random Dopant Induced Threshold Voltage Fluctuations and Lowering in Sub 0.1 micron MOSFETs
Published versio
The Hubble Constant from the Gravitational Lens B1608+656
We present a refined gravitational lens model of the four-image lens system
B1608+656 based on new and improved observational constraints: (i) the three
independent time-delays and flux-ratios from VLA observations, (ii) the
radio-image positions from VLBA observations, (iii) the shape of the
deconvolved Einstein Ring from optical and infrared HST images, (iv) the
extinction-corrected lens-galaxy centroids and structural parameters, and (v) a
stellar velocity dispersion, sigma_ap=247+-35 km/s, of the primary lens galaxy
(G1), obtained from an echelle spectrum taken with the Keck--II telescope. The
lens mass model consists of two elliptical mass distributions with power-law
density profiles and an external shear, totaling 22 free parameters, including
the density slopes which are the key parameters to determine the value of H_0
from lens time delays. This has required the development of a new lens code
that is highly optimized for speed. The minimum-chi^2 model reproduces all
observations very well, including the stellar velocity dispersion and the shape
of the Einstein Ring. A combined gravitational-lens and stellar dynamical
analysis leads to a value of the Hubble Constant of H_0=75(+7/-6) km/s/Mpc (68
percent CL; Omega_m=0.3, Omega_Lambda=0.7. The non-linear error analysis
includes correlations between all free parameters, in particular the density
slopes of G1 and G2, yielding an accurate determination of the random error on
H_0. The lens galaxy G1 is ~5 times more massive than the secondary lens galaxy
(G2), and has a mass density slope of gamma_G1=2.03(+0.14/-0.14) +- 0.03 (68
percent CL) for rho~r^-gamma', very close to isothermal (gamma'=2). (Abridged)Comment: 17 pages, 6 figures, 5 tables; revised version with correct fig.6 and
clarified text based on referee report; conclusions unchange
Nature of Intra-night Optical Variability of BL Lacertae
We present the results of extensive multi-band intra-night optical monitoring
of BL Lacertae during 2010--2012. BL Lacertae was very active in this period
and showed intense variability in almost all wavelengths. We extensively
observed it for a total for 38 nights; on 26 of them observations were done
quasi-simultaneously in B, V, R and I bands (totaling 113 light curves), with
an average sampling interval of around 8 minutes. BL Lacertae showed
significant variations on hour-like timescales in a total of 19 nights in
different optical bands. We did not find any evidence for periodicities or
characteristic variability time-scales in the light curves.
The intranight variability amplitude is generally greater at higher
frequencies and decreases as the source flux increases.
We found spectral variations in BL Lacertae in the sense that the optical
spectrum becomes flatter as the flux increases but in several flaring states
deviates from the linear trend suggesting different jet components contributing
to the emission at different times.Comment: 12 Pages, 5 figures, 3 Tables, Accepted for Publication in MNRA
UBVRI observations of the flickering of RS Ophiuchi at Quiescence
We report observations of the flickering variability of the recurrent nova RS
Oph at quiescence on the basis of simultaneous observations in 5 bands (UBVRI).
RS Oph has flickering source with (U-B)_0=-0.62 \pm 0.07, (B-V)_0=0.15 \pm
0.10, (V-R)_0=0.25 \pm 0.05. We find for the flickering source a temperature
T_fl = 9500 \pm 500 K, and luminosity L_fl = 50 - 150 L_sun (using a distance
of d=1.6kpc). We also find that on a (U-B) vs (B-V) diagram the flickering of
the symbiotic stars differs from that of the cataclysmic variables. The
possible source of the flickering is discussed. The data are available upon
request from the authors and on the web
www.astro.bas.bg/~rz/RSOph.UBVRI.2010.MNRAS.tar.gz.Comment: 7 pages, MNRAS (accepted
Dissecting the long-term emission behaviour of the BL Lac object Mrk 421
We report on long-term multiwavelengthmonitoring of blazar Mrk 421 by the GLAST-AGILE
Support Program of the Whole Earth Blazar Telescope (GASP-WEBT) collaboration and
Steward Observatory, and by the Swift and Fermi satellites. We study the source behaviour in
the period 2007–2015, characterized by several extreme flares. The ratio between the optical,
X-ray and γ -ray fluxes is very variable. The γ -ray flux variations show a fair correlation with
the optical ones starting from 2012.We analyse spectropolarimetric data and find wavelengthdependence
of the polarization degree (P), which is compatible with the presence of the
host galaxy, and no wavelength dependence of the electric vector polarization angle (EVPA).
Optical polarimetry shows a lack of simple correlation between P and flux and wide rotations of
the EVPA.We build broad-band spectral energy distributions with simultaneous near-infrared
and optical data from the GASP-WEBT and ultraviolet and X-ray data from the Swift satellite.
They show strong variability in both flux and X-ray spectral shape and suggest a shift of
the synchrotron peak up to a factor of ∼50 in frequency. The interpretation of the flux and
spectral variability is compatible with jet models including at least two emitting regions that
can change their orientation with respect to the line of sight.http://10.0.4.69/mnras/stx2185Accepted manuscrip
Anthracycline-induced cardiotoxicity – primary preventive options. An overview
Anthracycline-induced cardiotoxicity (AIC) has been known since the 1970s but remains relevant, mainly due to the widespread use of anthracyclines in oncological practice. Currently, AIC is viewed as a prolonged and continuous process that starts with the initial dose at molecular and cellular levels and advances, ultimately resulting in cardiomyopathy and heart failure. Many contemporary studies aim to discover methods for early detection of anthracycline-related myocardial injury. Additionally, ongoing research focuses on agents for primary prevention of AIC, examining their effectiveness, place, and timing of administration. This review aims to present the available preventive options, interconnecting them with their mechanisms of action and the mechanisms of AIC. According to current recommendations, primary prevention is indicated for high- and very high-risk patients and includes general measures to lower cardiovascular risk, neurohormonal therapy, and statins. Regular cardiology assessments are a crucial component of heart damage prevention. Evidence of mild myocardial injury (deteriorated Global Longitudinal Strain and troponin release) justifi es cardioprotective measures. Some aspects remain unanswered, including whether early cardioprotection is required, as well as the role and effi cacy of sacubitril/valsartan and sodium-glucose cotransporter 2 inhibitors (SGLT2 inhibitors) for AIC prevention. Physical activity is a promising method to reduce the cardiac damaging effects of anthracyclines.&nbsp
The nature of the intra-night optical variability in blazars
In this paper we present results of a short-term optical monitoring of 13
blazars. The objects were monitored mostly in the R-band for a total of ~ 160
hours between 2006 and 2011. We study the nature of the short-term variations
and show that most of them could be described as slow, smooth, and (almost)
linear changes of up to ~ 0.1 mag/hour, but many objects show no short-term
variations at all. In fact, we found only ~ 2 per cent chance to observe
variability of more than 0.1 mag/hour for the sample we observed. Hints for
quasi-periodic oscillations at very low amplitude levels are also found for
some objects. We briefly discuss some of the possible mechanisms to generate
the intra-night variability and the quasi-periodic oscillations.Comment: 10 pages, 13 figures, 1 table, Accepted for Publication in MNRA
- …
