1,325 research outputs found

    New high-pressure phase and equation of state of Ce2Zr2O8

    Full text link
    In this paper we report a new high-pressure rhombohedral phase of Ce2Zr2O8 observed from high-pressure angle-dispersive x-ray diffraction and Raman spectroscopy studies up to nearly 12 GPa. The ambient-pressure cubic phase of Ce2Zr2O8 transforms to a rhombohedral structure beyond 5 GPa with a feeble distortion in the lattice. Pressure evolution of unit-cell volume showed a change in compressibility above 5 GPa. The unit-cell parameters of the high-pressure rhombohedral phase at 12.1 GPa are ah = 14.6791(3) {\AA}, ch = 17.9421(5) {\AA}, V = 3348.1(1) {\AA}3. The structure relation between the parent cubic (P2_13) and rhombohedral (P3_2) phases were obtained by group-subgroup relations. All the Raman modes of the cubic phase showed linear evolution with pressure with the hardest one at 197 cm-1. Some Raman modes of the high-pressure phase have a non-linear evolution with pressure and softening of one low-frequency mode with pressure is found. The compressibility, equation of state, and pressure coefficients of Raman modes of Ce2Zr2O8 are also reported.Comment: 33 pages, 8 figures, 6 table

    Properties of the ferrimagnetic double-perovskite A_{2}FeReO_{6} (A=Ba and Ca)

    Get PDF
    Ceramics of A_{2}FeReO_{6} double-perovskite have been prepared and studied for A=Ba and Ca. Ba_{2}FeReO_{6} has a cubic structure (Fm3m) with aa\approx 8.0854(1) \AA whereas Ca_{2}FeReO_{6} has a distorted monoclinic symmetry with a5.396(1)A˚,b5.522(1)A˚,c7.688(2)A˚a\approx 5.396(1) \AA, b\approx 5.522(1) \AA, c\approx 7.688(2) \AA and β=90.4(P21/n)\beta =90.4^{\circ} (P21/n). The barium compound is metallic from 5 K to 385 K, i.e. no metal-insulator transition has been seen up to 385 K, and the calcium compound is semiconducting from 5 K to 385 K. Magnetization measurements show a ferrimagnetic behavior for both materials, with T_{c}=315 K for Ba_{2}FeReO_{6} and above 385 K for Ca_{2}FeReO_{6}. A specific heat measurement on the barium compound gave an electron density of states at the Fermi level, N(E_{F}) equal to 6.1×1024eV1mole1\times 10^{24} eV^{-1}mole^{-1}. At 5 K, we observed a negative magnetoresistance of 10 % in a magnetic field of 5 T, but only for Ba_{2}FeReO_{6}. Electrical, thermal and magnetic properties are discussed and compared to the analogous compounds Sr_{2}Fe(Mo,Re)O_{6}.Comment: 5 pages REVTeX, 7 figures included, submitted to PR

    Anomalous magnetic phase in an undistorted pyrochlore oxide Cd2Os2O7 induced by geometrical frustration

    Full text link
    We report on the muon spin rotation/relaxation study of a pyrochlore oxide, Cd2Os2O7, which exhibits a metal-insulator (MI) transition at T_{MI}~225 K without structural phase transition. It reveals strong spin fluctuation (>10^8/s) below the MI transition, suggesting a predominant role of geometrical spin frustration amongst Os^{5+} ions. Meanwhile, upon further cooling, a static spin density wave discontinuously develops below T_{SDW}~150 K. These observations strongly suggest the occurrence of an anomalous magnetic transition and associated change in the local spin dynamics in undistorted pyrochlore antiferromagnet.Comment: 5 pages, 4 figure

    Metal-Insulator Transition and Magnetic Order in the Pyrochlore Oxide Hg2Ru2O7

    Full text link
    We report results of NMR experiments on the ruthenium oxide Hg2Ru2O7 with the pyrochlore structure, which exhibits a metal-insulator transition at TMI = 107 K. In the metallic phase above TMI, the nuclear spin-lattice relaxation rate 1/T1 and the Knight shift at the Hg sites follow the Korringa relation, indicating the absence of substantial spatial spin correlation. At low temperatures in the insulating phase, 99,101Ru-NMR signals are observed at zero magnetic field, providing evidence for a commensurate antiferromagnetic order. The estimated ordered moment is about 1 muB per Ru, much smaller than 3 muB expected for the ionic (4d)3plus configuration of Ru5plus. Thus the localized spin models are not appropriate for the insulating phase of Hg2Ru2O7. We also discuss possible antiferromagnetic spin structures.Comment: 10 pages, 7 figure

    Characterisation of the mantle transcriptome and biomineralisation genes in the blunt-gaper clam, Mya truncata

    Get PDF
    Members of the Myidae family are ecologically and economically important, but there is currently very little molecular data on these species. The present study sequenced and assembled the mantle transcriptome of Mya truncata from the North West coast of Scotland and identified candidate biomineralisation genes. RNA-Seq reads were assembled to create 20,106 contigs in a de novo transciptome, 18.81% of which were assigned putative functions using BLAST sequence similarity searching (cuttoff E-value 1E − 10). The most highly expressed genes were compared to the Antarctic clam (Laternula elliptica) and showed that many of the dominant biological functions (muscle contraction, energy production, biomineralisation) in the mantle were conserved. There were however, differences in the constitutive expression of heat shock proteins, which were possibly due to the M. truncata sampling location being at a relatively low latitude, and hence relatively warm, in terms of the global distribution of the species. Phylogenetic analyses of the Tyrosinase proteins from M. truncata showed a gene expansion which was absent in L. elliptica. The tissue distribution expression patterns of putative biomineralisation genes were investigated using quantitative PCR, all genes showed a mantle specific expression pattern supporting their hypothesised role in shell secretion. The present study provides some preliminary insights into how clams from different environments – temperate versus polar – build their shells. In addition, the transcriptome data provides a valuable resource for future comparative studies investigating biomineralisation

    Uniaxial Tensile Properties of AS4 3D Woven Composites with Four Different Resin Systems: Experimental Results and Analysis: Property Computations

    Get PDF
    As a part of the NASA Composite Technology for Exploration project, eight different AS4 3D orthogonal woven composite panels were manufactured and were subjected to mechanical testing including uniaxial tension along the weaves' warp direction. Each set, with four different resin systems (KCR-IR6070, EP2400, RTM6, and RS-50), included weave architectures designed using 12K and 6K AS4 carbon fiber yarns. For the tension testing conducted at Room Temperature Ambient (RTA) conditions, the elastic modulus and strength of these eight panels (as-processed and thermally-cycled) were measured and compared while the potential evolution of micro-cracking before and after thermal cycling were monitored via optical microscopy and X-Ray Computed Tomography. The data set also included test results of the as-processed materials at Elevated Temperature Wet (ETW) conditions. In the second part of this study, efforts were made to compute elastic constants for AS4 6K/RTM6 and AS4 12K/RTM6 materials by implementing a finite element approach and the Multiscale Generalized Method of Cells (MSGMC) technique developed at NASA Glenn Research Center. Digimat-FE was used to model the weave architectures, assign properties, calculate yarn properties, create the finite element mesh, and compute the elastic properties by applying periodic boundary conditions to finite element models of each repeating unit cell. The required input data for MSGMC was generated using Matlab from Digimat exported weave information. Experimental and computational results were compared, and the differences and limitations in correlating to the test data were briefly discussed

    Theory of a Higher Order Phase Transition: Superconducting Transition in BKBO

    Full text link
    We describe here the properties expected of a higher (with emphasis on the order fourth) order phase transition. The order is identified in the sense first noted by Ehrenfest, namely in terms of the temperature dependence of the ordered state free energy near the phase boundary. We have derived an equation for the phase boundary in terms of the discontinuities in thermodynamic observables, developed a Ginzburg-Landau free energy and studied the thermodynamic and magnetic properties. We also discuss the current status of experiments on Ba0.6K0.4BiO3Ba_{0.6}K_{0.4}BiO_3 and other BiO3BiO_3 based superconductors, the expectations for parameters and examine alternative explanations of the experimental results.Comment: 18 pages, no figure

    Non-cubic layered structure of Ba(1-x)K(x)BiO3 superconductor

    Full text link
    Bismuthate superconductor Ba(1-x)K(x)BiO3 (x=0.27-0.49, Tc=25-32K) grown by an electrolysis technique was studied by electron diffraction and high-resolution electron microscopy. The crystalline structure thereof has been found to be non-cubic, of the layered nature, and non-centrosymmetric, with the lattice parameters a ~ ap, c ~ 2ap (ap is a simple cubic perovskite cell parameter) containing an ordered arrangement of barium and potassium. The evidence for the layered nature of the bismuthate superconductor removes the principal crystallographic contradiction between bismuthate and cuprate high-Tc superconductors.Comment: 4 pages, 3 figures, to be published in Physical Review B as a Rapid Communicatio

    Dynamical Mean Field Theory of Double Perovskite Ferrimagnets

    Full text link
    The dynamical mean field method is used to analyze the magnetic transition temperature and optical conductivity of a model for the ferrimagnetic double perovskites such as Sr2FeMoO6Sr_2FeMoO_6. The calculated transition temperatures and optical conductivities are found to depend sensitively on the band structure. For parameters consistent with local spin density approximation band calculations, the computed transition temperatures are lower than observed, and in particular decrease dramatically as band filling is increased, in contradiction to experiment. Band parameters which would increase the transition temperature are identified.Comment: Supercedes cond-mat/000628 (PRB64 024424/1-4 (2001
    corecore