412 research outputs found

    Symmetric Composite Laminate Stress Analysis

    Get PDF
    It is demonstrated that COSMIC/NASTRAN may be used to analyze plate and shell structures made of symmetric composite laminates. Although general composite laminates cannot be analyzed using NASTRAN, the theoretical development presented herein indicates that the integrated constitutive laws of a symmetric composite laminate resemble those of a homogeneous anisotropic plate, which can be analyzed using NASTRAN. A detailed analysis procedure is presented, as well as an illustrative example

    Interplay of Chemical Bonding and Magnetism in Fe_4N, Fe_3N, Fe_2N

    Full text link
    Using spin density functional theory we have carried out a comparative study of chemical bonding and magnetism in Fe_4N, Fe_3N and Fe_2N. All of these compounds form close packed Fe lattices, while N occupies octahedral interstitial positions. High spin fcc Fe and hypothetical FeN with rock salt structure have been included in our study as reference systems. We find strong, covalent Fe-N bonds as a result of a substantial \sigma-type p-d hybridisation, with some charge transfer to N. Those Fe d orbitals which contribute to the p-d bonds, do no longer participate in the exchange splitting of the Fe d bands. Because of the large exchange fields, the majority spin d bands are always fully occupied, while the minority spin d bands are close to half-filling, thus optimizing the Fe d-d covalent bonding. As a consequence, in good approximation the individual Fe moments decrease in steps of 0.5 \mu_B from fcc iron (2.7 \mu_B) via Fe_4N (2.7 and 1.97 mu_B}), \chem{Fe_3N} (1.99 \mu_B) to \zeta - Fe_2N (1.43 \mu_B).Comment: 16 pages, 15 figure

    Optical Conductivity of the Trellis-Lattice t-J Model: Charge Fluctuations in NaV_2O_5

    Full text link
    Optical conductivity of the trellis lattice t-J model at quarter filling is calculated by an exact-diagonalization technique on small clusters, whereby the valence state of V ions of NaV_2O_5 is considered. We show that the experimental features at \sim 1 eV, including peak positions, presence of shoulders, and anisotropic spectral weight, can be reproduced in reasonable range of parameter values, only by assuming that the system is in the charge disproportionated ground state. Possible reconciliation with experimental data suggesting the presence of uniform ladders at T>T_c is discussed.Comment: 4 pages, 4 gif figures. Minor revisions have been made. Hardcopies of figures (or the entire manuscript) can be obtained by e-mail request to [email protected]

    Building the Galactic halo from globular clusters: evidence from chemically unusual red giants

    Full text link
    We present a spectroscopic search for halo field stars that originally formed in globular clusters. Using moderate-resolution SDSS-III/SEGUE-2 spectra of 561 red giants with typical halo metallicities (-1.8 < [Fe/H] < -1.0), we identify 16 stars, 3% of the sample, with CN and CH bandstrength behavior indicating depleted carbon and enhanced nitrogen abundances relative to the rest of the data set. Since globular clusters are the only environment known in which stars form with this pattern of atypical light-element abundances, we claim that these stars are second-generation globular cluster stars that have been lost to the halo field via normal cluster mass-loss processes. Extrapolating from theoretical models of two-generation globular cluster formation, this result suggests that globular clusters contributed significant numbers of stars to the construction of the Galactic halo: we calculate that a minimum of 17% of the present-day mass of the stellar halo was originally formed in globular clusters. The ratio of CN-strong to CN-normal stars drops with Galactocentric distance, suggesting that the inner-halo population may be the primary repository of these stars.Comment: 9 pages including 8 figures, A&A accepte

    Alternating Spin and Orbital Dimerization in Strong-coupling Two-band Models

    Full text link
    We study a one-dimensional Hamiltonian consisting of coupled SU(2) spin and orbital degrees of freedom. Using the density matrix renormalization group, we calculate the phase-diagram and the ground state correlation functions for this model. We find that, in addition to the ferromagnetic and power-law antiferromagnetic phases for spin and orbital degrees of freedom, this model has a gapless line extending from the ferromagnetic phase to the Bethe ansatz solvable SU(4) critical point, and a gapped phase with doubly degenerate ground states which form alternating spin and orbital singlets. The spin-gap and the order parameters are evaluated and the relevance to several recently discovered spin-gap materials is discussed.Comment: 4 pages REVTEX and 4 Postscript figure

    NaV_2O_5 as an Anisotropic t-J Ladder at Quarter Filling

    Full text link
    Based on recent experimental evidences that the electronic charge degrees of freedom plays an essential role in the spin-Peierls--like phase transition of NaV2_2O5_5, we first make the mapping of low-energy electronic states of the dd-pp model for NaV2_2O5_5 to the quarter-filled tt-JJ ladder with anisotropic parameter values between legs and rungs, and then show that this anisotropic tt-JJ ladder is in the Mott insulating state, of which lowest-energy states can be modeled by the one-dimensional Heisenberg antiferromagnet with the effective exchange interaction JeffJ_{eff} whose value is consistent with experimental estimates. We furthermore examine the coupling between the ladders as the trellis lattice model and show that the nearest-neighbor Coulomb repulsion on the zigzag-chain bonds can lead to the instability in the charge degrees of freedom of the ladders.Comment: 4 pages, 5 gif figures. Fig.3 corrected. Hardcopies of figures (or the entire manuscript) can be obtained by e-mail request to [email protected]

    Entanglement and Tensor Product Decomposition for Two Fermions

    Full text link
    The problem of the choice of tensor product decomposition in a system of two fermions with the help of Bogoliubov transformations of creation and annihilation operators is discussed. The set of physical states of the composite system is restricted by the superselection rule forbidding the superposition of fermions and bosons. It is shown that the Wootters concurrence is not proper entanglement measure in this case. The explicit formula for the entanglement of formation is found and its dependence on tensor product decompositions of the Hilbert space is discussed. It is shown that the set of separable states is narrower than in two-qubit case. Moreover, there exist states which are separable with respect to all tensor product decompositions of the Hilbert space.Comment: 8pp, published versio

    Exact diagonalisation study of charge order in the quarter-filled two-leg ladder system NaV2O5

    Full text link
    The charge ordering transition in the layer compound NaV2O5 is studied by means of exact diagonalization methods for finite systems. The 2-leg ladders of the V-Trellis lattice are associated with one spin variable of the vanadium 3d-electron in the rung and a pseudospin variable that describes its positional degree of freedom. The charge ordering (CO) due to intersite Coulomb interactions is described by an effective Ising-like Hamiltonian for the pseudo-spins that are coupled to the spin fluctuations along the ladder. We employ a Lanczos algortihm on 2D lattice to compute charge (pseudo-spin) and spin-correlation functions and the energies of the low lying excited states. A CO-phase diagram is constructed and the effect of intra-ladder exchange on the CO transition is studied. It is shown that a phase with no-longe range order (no-LRO) exists between the in-line and zig-zag ordered structures. We provide a finite-size scaling analysis for the spin excitation gap and also discuss the type of excitations. In addition we studied the effect of bond-alternation of spin exchange and derived a scaling form for the spin gap in terms of the dimerization parameter.Comment: 9 pages with 9 EPS figures and 1 table, To be appeared in Phys. Rev. B (2001

    A Model Study of the Low-Energy Charge Dynamics of NaV_2O_5

    Full text link
    An exact-diagonalization technique on small clusters is used to calculate the dynamical density correlation functions of the dimerized t-J chain and coupled anisotropic t-J ladders (trellis lattice) at quarter filling, i.e., the systems regarded as a network of pairs (dimers or rungs) of sites coupled weakly via the hopping and exchange interactions. We thereby demonstrate that the intersite Coulomb repulsions between the pairs induce a low-energy collective mode in the charge excitations of the systems where the internal charge degrees of freedom of the pairs play an essential role. Implications to the electronic states of NaV_2O_5, i.e., fluctuations of the valence state of V ions and phase transition as a charge ordering, are discussed.Comment: 4 pages, 4 gif figures. Hardcopies of figures (or the entire manuscript) can be obtained by e-mail request to [email protected]

    Can a frustrated spin-cluster model describe the low-temperature physics of NaV_2O_5 ?

    Full text link
    Recent experimental evidence suggest the existence of three distinct V-valence states (V^{+4}, V^{+4.5} and V^{+5}) in the low-temperature phase of NaV_2O_5 in apparent discrepancy with the observed spin-gap. We investigate a novel spin cluster model, consisting of weakly coupled, frustrated four-spin clusters aligned along the crystallographic b-axis that was recently proposed to reconcile these experimental observations. We have studied the phase diagram and the magnon dispersion relation of this model using DMRG, exact diagonalization and a novel cluster-operator theory. We find a spin-gap for all parameter values and two distinct phases, a cluster phase and a Haldane phase. We evaluate the size of the gap and the magnon dispersion and find no parameter regime which would reproduce the experimental results. We conclude that this model is inappropriate for the low-temperature regime of NaV_2O_5
    corecore