235 research outputs found
Interacting multi-component exciton gases in a potential trap: phase separation and Bose-Einstein condensation
The system under consideration is a multi-component gas of interacting para-
and orthoexcitons confined in a three dimensional potential trap. We calculate
the spatially resolved optical emission spectrum due to interband transitions
involving weak direct and phonon mediated exciton-photon interactions. For each
component, the occurrence of a Bose-Einstein condensate changes the spectrum in
a characteristic way so that it directly reflects the constant chemical
potential of the excitons and the renormalization of the quasiparticle
excitation spectrum. Moreover, the interaction between the components leads, in
dependence on temperature and particle number, to modifications of the spectra
indicating phase separation of the subsystems. Typical examples of density
profiles and luminescence spectra of ground-state para- and orthoexcitons in
cuprous oxide are given.Comment: 7 pages, 6 figure
Condensation of Excitons in Cu2O at Ultracold Temperatures: Experiment and Theory
We present experiments on the luminescence of excitons confined in a
potential trap at milli-Kelvin bath temperatures under cw-excitation. They
reveal several distinct features like a kink in the dependence of the total
integrated luminescence intensity on excitation laser power and a bimodal
distribution of the spatially resolved luminescence. Furthermore, we discuss
the present state of the theoretical description of Bose-Einstein condensation
of excitons with respect to signatures of a condensate in the luminescence. The
comparison of the experimental data with theoretical results with respect to
the spatially resolved as well as the integrated luminescence intensity shows
the necessity of taking into account a Bose-Einstein condensed excitonic phase
in order to understand the behaviour of the trapped excitons.Comment: 41 pages, 23 figure
Vocal imitations and the identification of sound events
International audienceIt is commonly observed that a speaker vocally imitates a sound that she or he intends to communicate to an interlocutor. We report on an experiment that examined the assumption that vocal imitations can e ffectively communicate a referent sound, and that they do so by conveying the features necessary for the identifi cation of the referent sound event. Subjects were required to sort a set of vocal imitations of everyday sounds. The resulting clusters corresponded in most of the cases to the categories of the referent sound events, indicating that the imitations enabled the listeners to recover what was imitated. Furthermore, a binary decision tree analysis showed that a few characteristic acoustic features predicted the clusters. These features also predicted the classi fication of the referent sounds, but did not generalize to the categorization of other sounds. This showed that, for the speaker, vocally imitating a sound consists of conveying the acoustic features important for recognition, within the constraints of human vocal production. As such vocal imitations prove to be a phenomenon potentially useful to study sound identifi cation
Asteroids' physical models from combined dense and sparse photometry and scaling of the YORP effect by the observed obliquity distribution
The larger number of models of asteroid shapes and their rotational states
derived by the lightcurve inversion give us better insight into both the nature
of individual objects and the whole asteroid population. With a larger
statistical sample we can study the physical properties of asteroid
populations, such as main-belt asteroids or individual asteroid families, in
more detail. Shape models can also be used in combination with other types of
observational data (IR, adaptive optics images, stellar occultations), e.g., to
determine sizes and thermal properties. We use all available photometric data
of asteroids to derive their physical models by the lightcurve inversion method
and compare the observed pole latitude distributions of all asteroids with
known convex shape models with the simulated pole latitude distributions. We
used classical dense photometric lightcurves from several sources and
sparse-in-time photometry from the U.S. Naval Observatory in Flagstaff,
Catalina Sky Survey, and La Palma surveys (IAU codes 689, 703, 950) in the
lightcurve inversion method to determine asteroid convex models and their
rotational states. We also extended a simple dynamical model for the spin
evolution of asteroids used in our previous paper. We present 119 new asteroid
models derived from combined dense and sparse-in-time photometry. We discuss
the reliability of asteroid shape models derived only from Catalina Sky Survey
data (IAU code 703) and present 20 such models. By using different values for a
scaling parameter cYORP (corresponds to the magnitude of the YORP momentum) in
the dynamical model for the spin evolution and by comparing synthetics and
observed pole-latitude distributions, we were able to constrain the typical
values of the cYORP parameter as between 0.05 and 0.6.Comment: Accepted for publication in A&A, January 15, 201
The SERRATE protein is involved in alternative splicing in <em>Arabidopsis thaliana</em>
Howalternative splicing (AS) is regulated in plants has not yet been elucidated. Previously, we have shown that the nuclear cap-binding protein complex (AtCBC) is involved in AS in Arabidopsis thaliana. Here we show that both subunits of AtCBC (AtCBP20 and AtCBP80) interact with SERRATE (AtSE), a protein involved in the microRNA biogenesis pathway. Moreover, using a high-resolution reverse transcript-ase-polymerase chain reaction AS system we have found that AtSE influences AS in a similar way to the cap-binding complex (CBC), preferentially affecting selection of 50 splice site of first introns. The AtSE protein acts in cooperation with AtCBC: many changes observed in the mutant lacking the correct SERRATE activity were common to those observed in the cbp mutants. Interestingly, significant changes in AS of some genes were also observed in other mutants of plant microRNA biogenesis pathway, hyl1-2 and dcl1-7, but a majority of them did not cor-respond to the changes observed in the se-1mutant. Thus, the role of SERRATE in AS regulation is distinct from that of HYL1andDCL1, and is similar to the regu-lation of AS in which CBC is involved
Direct observation of active material concentration gradients and crystallinity breakdown in LiFePO4 electrodes during charge/discharge cycling of lithium batteries
The phase changes that occur during discharge of an electrode comprised of LiFePO4, carbon, and PTFE binder have been studied in lithium half cells by using X-ray diffraction measurements in reflection geometry. Differences in the state of charge between the front and the back of LiFePO4 electrodes have been visualized. By modifying the X-ray incident angle the depth of penetration of the X-ray beam into the electrode was altered, allowing for the examination of any concentration gradients that were present within the electrode. At high rates of discharge the electrode side facing the current collector underwent limited lithium insertion while the electrode as a whole underwent greater than 50% of discharge. This behavior is consistent with depletion at high rate of the lithium content of the electrolyte contained in the electrode pores. Increases in the diffraction peak widths indicated a breakdown of crystallinity within the active material during cycling even during the relatively short duration of these experiments, which can also be linked to cycling at high rate
Nicotine exposure and transgenerational impact: a prospective study on small regulatory microRNAs
Early developmental stages are highly sensitive to stress and it has been reported that pre-conditioning with tobacco smoking during adolescence predisposes those youngsters to become smokers as adults. However, the molecular mechanisms of nicotine-induced transgenerational consequences are unknown. In this study, we genome-widely investigated the impact of nicotine exposure on small regulatory microRNAs (miRNAs) and its implication on health disorders at a transgenerational aspect. Our results demonstrate that nicotine exposure, even at the low dose, affected the global expression profiles of miRNAs not only in the treated worms (F0 parent generation) but also in two subsequent generations (F1 and F2, children and grandchildren). Some miRNAs were commonly affected by nicotine across two or more generations while others were specific to one. The general miRNA patterns followed a “two-hit� model as a function of nicotine exposure and abstinence. Target prediction and pathway enrichment analyses showed daf-4, daf-1, fos-1, cmk-1, and unc-30 to be potential effectors of nicotine addiction. These genes are involved in physiological states and phenotypes that paralleled previously published nicotine induced behavior. Our study offered new insights and further awareness on the transgenerational effects of nicotine exposed during the vulnerable post-embryonic stages, and identified new biomarkers for nicotine addiction.ECU Open Access Publishing Support Fun
- …
