608 research outputs found
Intrinsic adaptation in autonomous recurrent neural networks
A massively recurrent neural network responds on one side to input stimuli
and is autonomously active, on the other side, in the absence of sensory
inputs. Stimuli and information processing depends crucially on the qualia of
the autonomous-state dynamics of the ongoing neural activity. This default
neural activity may be dynamically structured in time and space, showing
regular, synchronized, bursting or chaotic activity patterns.
We study the influence of non-synaptic plasticity on the default dynamical
state of recurrent neural networks. The non-synaptic adaption considered acts
on intrinsic neural parameters, such as the threshold and the gain, and is
driven by the optimization of the information entropy. We observe, in the
presence of the intrinsic adaptation processes, three distinct and globally
attracting dynamical regimes, a regular synchronized, an overall chaotic and an
intermittent bursting regime. The intermittent bursting regime is characterized
by intervals of regular flows, which are quite insensitive to external stimuli,
interseeded by chaotic bursts which respond sensitively to input signals. We
discuss these finding in the context of self-organized information processing
and critical brain dynamics.Comment: 24 pages, 8 figure
A simple interpretation of quantum mirages
In an interesting new experiment the electronic structure of a magnetic atom
adsorbed on the surface of Cu(111), observed by STM, was projected into a
remote location on the same surface. The purpose of the present paper is to
interpret this experiment with a model Hamiltonian, using ellipses of the size
of the experimental ones, containing about 2300 atoms. The charge distribution
for the different wavefunctions is analyzed, in particular, for those with
energy close to the Fermi energy of copper Ef. Some of them show two symmetric
maxima located on the principal axis of the ellipse but not necessarily at the
foci. If a Co atom is adsorbed at the site where the wavefunction with energy
has a maximum and the interaction is small, the main effect of the
adsorbed atom will be to split this particular wavefunction in two. The total
charge density will remain the same but the local density of states will
present a dip at Ef at any site where the charge density is large enough. We
relate the presence of this dip to the observation of quantum mirages. Our
interpretation suggests that other sites, apart from the foci of the ellipses,
can be used for projecting atomic images and also indicates the conditions for
other non magnetic adsorbates to produce mirages.Comment: 3 pages, 3 Fig
Method of measurements with random perturbation: Application in photoemission experiments
We report an application of a simultaneous perturbation stochastic
approximation (SPSA) algorithm to filtering systematic noise (SN) with non-zero
mean value in photoemission data. In our analysis we have used a series of 50
single-scan photoemission spectra of W(110) surface where randomly chosen SN
was added. It was found that the SPSA-evaluated spectrum is in good agreement
with the spectrum measured without SN. On the basis of our results a wide
application of SPSA for evaluation of experimental data is anticipated.Comment: 11 pages, 3 figure
Analysis of Different Types of Regret in Continuous Noisy Optimization
The performance measure of an algorithm is a crucial part of its analysis.
The performance can be determined by the study on the convergence rate of the
algorithm in question. It is necessary to study some (hopefully convergent)
sequence that will measure how "good" is the approximated optimum compared to
the real optimum. The concept of Regret is widely used in the bandit literature
for assessing the performance of an algorithm. The same concept is also used in
the framework of optimization algorithms, sometimes under other names or
without a specific name. And the numerical evaluation of convergence rate of
noisy algorithms often involves approximations of regrets. We discuss here two
types of approximations of Simple Regret used in practice for the evaluation of
algorithms for noisy optimization. We use specific algorithms of different
nature and the noisy sphere function to show the following results. The
approximation of Simple Regret, termed here Approximate Simple Regret, used in
some optimization testbeds, fails to estimate the Simple Regret convergence
rate. We also discuss a recent new approximation of Simple Regret, that we term
Robust Simple Regret, and show its advantages and disadvantages.Comment: Genetic and Evolutionary Computation Conference 2016, Jul 2016,
Denver, United States. 201
Systems approaches and algorithms for discovery of combinatorial therapies
Effective therapy of complex diseases requires control of highly non-linear
complex networks that remain incompletely characterized. In particular, drug
intervention can be seen as control of signaling in cellular networks.
Identification of control parameters presents an extreme challenge due to the
combinatorial explosion of control possibilities in combination therapy and to
the incomplete knowledge of the systems biology of cells. In this review paper
we describe the main current and proposed approaches to the design of
combinatorial therapies, including the empirical methods used now by clinicians
and alternative approaches suggested recently by several authors. New
approaches for designing combinations arising from systems biology are
described. We discuss in special detail the design of algorithms that identify
optimal control parameters in cellular networks based on a quantitative
characterization of control landscapes, maximizing utilization of incomplete
knowledge of the state and structure of intracellular networks. The use of new
technology for high-throughput measurements is key to these new approaches to
combination therapy and essential for the characterization of control
landscapes and implementation of the algorithms. Combinatorial optimization in
medical therapy is also compared with the combinatorial optimization of
engineering and materials science and similarities and differences are
delineated.Comment: 25 page
Variational ground states of 2D antiferromagnets in the valence bond basis
We study a variational wave function for the ground state of the
two-dimensional S=1/2 Heisenberg antiferromagnet in the valence bond basis. The
expansion coefficients are products of amplitudes h(x,y) for valence bonds
connecting spins separated by (x,y) lattice spacings. In contrast to previous
studies, in which a functional form for h(x,y) was assumed, we here optimize
all the amplitudes for lattices with up to 32*32 spins. We use two different
schemes for optimizing the amplitudes; a Newton/conjugate-gradient method and a
stochastic method which requires only the signs of the first derivatives of the
energy. The latter method performs significantly better. The energy for large
systems deviates by only approx. 0.06% from its exact value (calculated using
unbiased quantum Monte Carlo simulations). The spin correlations are also well
reproduced, falling approx. 2% below the exact ones at long distances. The
amplitudes h(r) for valence bonds of long length r decay as 1/r^3. We also
discuss some results for small frustrated lattices.Comment: v2: 8 pages, 5 figures, significantly expanded, new optimization
method, improved result
Transport of Pacific water into the Canada Basin and the formation of the Chukchi Slope Current
Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 123 (2018): 7453-7471, doi:10.1029/2018JC013825.A high‐resolution regional ocean model together with moored hydrographic and velocity measurements is used to identify the pathways and mechanisms by which Pacific water, modified over the Chukchi shelf, crosses the shelf break into the Canada Basin. Most of the Pacific water flowing into the Arctic Ocean through Bering Strait enters the Canada Basin through Barrow Canyon. Strong advection allows the water to cross the shelf break and exit the shelf. Wind forcing plays little role in this process. Some of the outflowing water from Barrow Canyon flows to the east into the Beaufort Sea; however, approximately 0.4 to 0.5 Sv turns to the west forming the newly identified Chukchi Slope Current. This transport occurs at all times of year, channeling both summer and winter waters from the shelf to the Canada Basin. The model indicates that approximately 75% of this water was exposed to the mixed layer within the Chukchi Sea, while the remaining 25% was able to cross the shelf during the stratified summer before convection commences in late fall. We view the Ό(0.5) Sv of the Chukchi Slope Current as replacing Beaufort Gyre water that would
have come from the east in the absence of the cross-topography flow in Barrow Canyon. The weak eastward
flow on the Beaufort slope is also consistent with the local disruption of the Beaufort Gyre by the Barrow
Canyon outflow.Bureau of Ocean and Energy Management Grant Number: M12AC00008;
DOC | National Oceanic and Atmospheric Administration (NOAA) Grant Number: NA16OAR4310248;
National Science Foundation (NSF) Grant Numbers: PLR-1415489, OCE-15331702019-04-2
Role of shelfbreak upwelling in the formation of a massive under-ice bloom in the Chukchi Sea
Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 105 (2014): 17-29, doi:10.1016/j.dsr2.2014.03.017.In the summer of 2011, an oceanographic survey carried out by the Impacts of Climate
on EcoSystems and Chemistry of the Arctic Pacific Environment (ICESCAPE)
program revealed the presence of a massive phytoplankton bloom under the ice near
the shelfbreak in the central Chukchi Sea. For most of the month preceding the measurements
there were relatively strong easterly winds, providing upwelling favorable
conditions along the shelfbreak. Analysis of similar hydrographic data from summer
2002, in which there were no persistent easterly winds, found no evidence of upwelling
near the shelfbreak. A two-dimensional ocean circulation model is used to show that
sufficiently strong winds can result not only in upwelling of high nutrient water from
offshore onto the shelf, but it can also transport the water out of the bottom boundary
layer into the surface Ekman layer at the shelf edge. The extent of upwelling is
determined by the degree of overlap between the surface Ekman layer and the bottom
boundary layer on the outer shelf. Once in the Ekman layer, this high nutrient
water is further transported to the surface through mechanical mixing driven by the
surface stress. Two model tracers, a nutrient tracer and a chlorophyll tracer, reveal
distributions very similar to that observed in the data. These results suggest that the
biomass maximum near the shelfbreak during the massive bloom in summer 2011 resulted
from an enhanced supply of nutrients upwelled from the halocline seaward of
the shelf. The decade long trend in summertime surface winds suggest that easterly
winds in this region are increasing in strength and that such bloom events will become
more common.This
study was supported by the National Science Foundation under Grant OCE-0959381 (MAS), and
by the Ocean Biology and Biogeochemistry Program and the Cryosphere Science Program of the
National Aeronautic and Space Administration under Award NNX10AF42G (RSP;KRA). GWKM
was supported by the Natural Sciences and Engineering Research Council of Canada. ETB was
supported by the U. S. Navy
Seasonal evolution of Aleutian low pressure systems: Implications for the North Pacific subpolar circulation
The seasonal change in the development of Aleutian low pressure systems from early fall to early winter is analyzed using a combination of meteorological reanalysis fields, satellite sea surface temperature (SST) data, and satellite wind data. The time period of the study is September–December 2002, although results are shown to be representative of the long-term climatology. Characteristics of the storms were documented as they progressed across the North Pacific, including their path, central pressure, deepening rate, and speed of translation. Clear patterns emerged. Storms tended to deepen in two distinct geographical locations—the Gulf of Alaska in early fall and the western North Pacific in late fall. In the Gulf of Alaska, a quasi-permanent “notch” in the SST distribution is argued to be of significance. The signature of the notch is imprinted in the atmosphere, resulting in a region of enhanced cyclonic potential vorticity in the lower troposphere that is conducive for storm development. Later in the season, as winter approaches and the Sea of Okhotsk becomes partially ice covered and cold, the air emanating from the Asian continent leads to enhanced baroclinicity in the region south of Kamchatka. This corresponds to enhanced storm cyclogenesis in that region. Consequently, there is a seasonal westward migration of the dominant lobe of the Aleutian low. The impact of the wind stress curl pattern resulting from these two regions of storm development on the oceanic circulation is investigated using historical hydrography. It is argued that the seasonal bimodal input of cyclonic vorticity from the wind may be partly responsible for the two distinct North Pacific subarctic gyres
The North Icelandic Jet and its relationship to the North Icelandic Irminger Current
Author Posting. © The Authors, 2017. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 75 (2017): 605-639, doi:10.1357/002224017822109505.Shipboard hydrographic and velocity sections are used to quantify aspects of the North Icelandic Jet (NIJ), which transports dense overflow water to Denmark Strait, and the North Icelandic Irminger Current (NIIC), which imports Atlantic water to the Iceland Sea. The mean transports of the two currents are comparable, in line with previous notions that there is a local overturning cell in the Iceland Sea that transforms the Atlantic water to dense overflow water. As the NIJ and NIIC flow along the north side of Iceland, they appear to share a common front when the bottom topography steers them close together, but even when they are separate there is a poleward flow inshore of the NIJ. The interannual variability in salinity of the inflowing NIIC is in phase with that of the outflowing NIJ. It is suggested, however, that the NIIC signal does not dictate that of the NIJ. Instead, the combination of liquid and solid freshwater flux from the east Greenland boundary can account for the observed net freshening of the NIIC to the NIJ for the densest half of the overturning circulation in the northwest Iceland Sea. This implies that the remaining overturning must occur in a different geographic area, consistent with earlier model results. The year-to-year variability in salinity of the NIJ can be explained by applying annual anomalies of evaporation minus precipitation over the Iceland Sea to a one-dimensional mixing model. These anomalies vary in phase with the wind stress curl over the North Atlantic subpolar gyre, which previous studies have shown drives the interannual variation in salinity of the inflowing NIIC.Funding for the project was provided by the National Science Foundation
under grants OCE-1558742 (RSP, MAS, DJT, CN), OCE-1433170 (MAS), and OCE-0959381 (DM);
the Norwegian Research Council under grant agreement no. 231647 (KV); the Bergen Research
Foundation (KV); the European Union Seventh Framework Programme (FP7 2007-2013) under grant
agreement 308299 (NACLIM project, KV, HV, and SJ); and the Natural Sciences and Engineering
Research Council of Canada (GWKM)
- …
