10,301 research outputs found
Toward High-Precision Astrometry with WFPC2. I. Deriving an Accurate PSF
The first step toward doing high-precision astrometry is the measurement of
individual stars in individual images, a step that is fraught with dangers when
the images are undersampled. The key to avoiding systematic positional error in
undersampled images is to determine an extremely accurate point-spread function
(PSF). We apply the concept of the {\it effective} PSF, and show that in images
that consist of pixels it is the ePSF, rather than the often-used instrumental
PSF, that embodies the information from which accurate star positions and
magnitudes can be derived. We show how, in a rich star field, one can use the
information from dithered exposures to derive an extremely accurate effective
PSF by iterating between the PSF itself and the star positions that we measure
with it. We also give a simple but effective procedure for representing spatial
variations of the HST PSF. With such attention to the PSF, we find that we are
able to measure the position of a single reasonably bright star in a single
image with a precision of 0.02 pixel (2 mas in WF frames, 1 mas in PC), but
with a systematic accuracy better than 0.002 pixel (0.2 mas in WF, 0.1 mas in
PC), so that multiple observations can reliably be combined to improve the
accuracy by .Comment: 33 pp. text + 15 figs.; accepted by PAS
A flowing plasma model to describe drift waves in a cylindrical helicon discharge
A two-fluid model developed originally to describe wave oscillations in the
vacuum arc centrifuge, a cylindrical, rapidly rotating, low temperature and
confined plasma column, is applied to interpret plasma oscillations in a RF
generated linear magnetised plasma (WOMBAT), with similar density and field
strength. Compared to typical centrifuge plasmas, WOMBAT plasmas have slower
normalised rotation frequency, lower temperature and lower axial velocity.
Despite these differences, the two-fluid model provides a consistent
description of the WOMBAT plasma configuration and yields qualitative agreement
between measured and predicted wave oscillation frequencies with axial field
strength. In addition, the radial profile of the density perturbation predicted
by this model is consistent with the data. Parameter scans show that the
dispersion curve is sensitive to the axial field strength and the electron
temperature, and the dependence of oscillation frequency with electron
temperature matches the experiment. These results consolidate earlier claims
that the density and floating potential oscillations are a resistive drift
mode, driven by the density gradient. To our knowledge, this is the first
detailed physics model of flowing plasmas in the diffusion region away from the
RF source. Possible extensions to the model, including temperature
non-uniformity and magnetic field oscillations, are also discussed
Hyperbola-generator for location of aperiodic events
Plotting device, when used in conjunction with three or more detectors and local receiver and recorder, can quickly pinpoint location of any aperiodic event. Operation requires minimal training and is readily adapted to the field. Mechanical error in device prototype is less than or equal to 3 percent
Can guidelines improve referral to elective surgical specialties for adults? A systematic review
Aim To assess effectiveness of guidelines for referral for
elective surgical assessment.
Method Systematic review with descriptive synthesis.
Data sources Medline, EMBASE, CINAHL and Cochrane
database up to 2008. Hand searches of journals and
websites.
Selection of studies Studies evaluated guidelines for
referral from primary to secondary care, for elective
surgical assessment for adults.
Outcome measures Appropriateness of referral (usually
measured as guideline compliance) including clinical
appropriateness, appropriateness of destination and of
pre-referral management (eg, diagnostic investigations),
general practitioner knowledge of referral
appropriateness, referral rates, health outcomes and
costs.
Results 24 eligible studies (5 randomised control trials,
6 cohort, 13 case series) included guidelines from UK,
Europe, Canada and the USA for referral for
musculoskeletal, urological, ENT, gynaecology, general
surgical and ophthalmological conditions. Interventions
varied from complex (“one-stop shops”) to simple
guidelines. Four randomized control trials reported
increases in appropriateness of pre-referral care
(diagnostic investigations and treatment). No evidence
was found for effects on practitioner knowledge. Mixed
evidence was reported on rates of referral and costs
(rates and costs increased, decreased or stayed the
same). Two studies reported on health outcomes finding
no change.
Conclusions Guidelines for elective surgical referral can
improve appropriateness of care by improving prereferral
investigation and treatment, but there is no
strong evidence in favour of other beneficial effects
Mass of highly magnetized white dwarfs exceeding the Chandrasekhar limit: An analytical view
In recent years a number of white dwarfs has been observed with very high
surface magnetic fields. We can expect that the magnetic field in the core of
these stars would be much higher (~ 10^{14} G). In this paper, we analytically
study the effect of high magnetic field on relativistic cold electron, and
hence its effect on the stability and the mass-radius relation of a magnetic
white dwarf. In strong magnetic fields, the equation of state of the Fermi gas
is modified and Landau quantization comes into play. For relatively very high
magnetic fields (with respect to the energy density of matter) the number of
Landau levels is restricted to one or two. We analyse the equation of states
for magnetized electron degenerate gas analytically and attempt to understand
the conditions in which transitions from the zero-th Landau level to first
Landau level occur. We also find the effect of the strong magnetic field on the
star collapsing to a white dwarf, and the mass-radius relation of the resulting
star. We obtain an interesting theoretical result that it is possible to have
white dwarfs with mass more than the mass set by Chandrasekhar limit.Comment: 18 pages including 3 figures; to appear in Modern Physics Letters
Young and intermediate-age massive star clusters
An overview of our current understanding of the formation and evolution of
star clusters is given, with main emphasis on high-mass clusters. Clusters form
deeply embedded within dense clouds of molecular gas. Left-over gas is cleared
within a few million years and, depending on the efficiency of star formation,
the clusters may disperse almost immediately or remain gravitationally bound.
Current evidence suggests that a few percent of star formation occurs in
clusters that remain bound, although it is not yet clear if this fraction is
truly universal. Internal two-body relaxation and external shocks will lead to
further, gradual dissolution on timescales of up to a few hundred million years
for low-mass open clusters in the Milky Way, while the most massive clusters (>
10^5 Msun) have lifetimes comparable to or exceeding the age of the Universe.
The low-mass end of the initial cluster mass function is well approximated by a
power-law distribution, dN/dM ~ M^{-2}, but there is mounting evidence that
quiescent spiral discs form relatively few clusters with masses M > 2 x 10^5
Msun. In starburst galaxies and old globular cluster systems, this limit
appears to be higher, at least several x 10^6 Msun. The difference is likely
related to the higher gas densities and pressures in starburst galaxies, which
allow denser, more massive giant molecular clouds to form. Low-mass clusters
may thus trace star formation quite universally, while the more long-lived,
massive clusters appear to form preferentially in the context of violent star
formation.Comment: 21 pages, 3 figures. To appear as invited review article in a special
issue of the Phil. Trans. Royal Soc. A: Ch. 9 "Star clusters as tracers of
galactic star-formation histories" (ed. R. de Grijs). Fully peer reviewed.
PDFLaTeX, requires rspublic.cls style fil
Impaired desynchronization of beta activity underlies memory deficits in people with Parkinson's disease
Partially asymmetric exclusion models with quenched disorder
We consider the one-dimensional partially asymmetric exclusion process with
random hopping rates, in which a fraction of particles (or sites) have a
preferential jumping direction against the global drift. In this case the
accumulated distance traveled by the particles, x, scales with the time, t, as
x ~ t^{1/z}, with a dynamical exponent z > 0. Using extreme value statistics
and an asymptotically exact strong disorder renormalization group method we
analytically calculate, z_{pt}, for particlewise (pt) disorder, which is argued
to be related to the dynamical exponent for sitewise (st) disorder as
z_{st}=z_{pt}/2. In the symmetric situation with zero mean drift the particle
diffusion is ultra-slow, logarithmic in time.Comment: 4 pages, 3 figure
Time-Dependent Models for Dark Matter at the Galactic Center
The prospects of indirect detection of dark matter at the galactic center
depend sensitively on the mass profile within the inner parsec. We calculate
the distribution of dark matter on sub-parsec scales by integrating the
time-dependent Fokker-Planck equation, including the effects of
self-annihilations, scattering of dark matter particles by stars, and capture
in the supermassive black hole. We consider a variety of initial dark matter
distributions, including models with very high densities ("spikes") near the
black hole, and models with "adiabatic compression" of the baryons. The
annihilation signal after 10 Gyr is found to be substantially reduced from its
initial value, but in dark matter models with an initial spike,
order-of-magnitude enhancements can persist compared with the rate in
spike-free models, with important implications for indirect dark matter
searches with GLAST and Air Cherenkov Telescopes like HESS and CANGAROO.Comment: Four page
Boundary conditions and defect lines in the Abelian sandpile model
We add a defect line of dissipation, or crack, to the Abelian sandpile model.
We find that the defect line renormalizes to separate the two-dimensional plane
into two half planes with open boundary conditions. We also show that varying
the amount of dissipation at a boundary of the Abelian sandpile model does not
affect the universality class of the boundary condition. We demonstrate that a
universal coefficient associated with height probabilities near the defect can
be used to classify boundary conditions.Comment: 8 pages, 1 figure; suggestions from referees incorporated; to be
published in Phys. Rev.
- …
