20,406 research outputs found

    Generic composite flywheel designs

    Get PDF
    Fiber reinforced composites belong to a new class of materials and allow great flexibility in flywheel design. The most efficient flywheel may no longer have the classic Stodola taper and indeed, may not even be round. Some of the flywheel designs that have been developed in the past are discussed. Although choice of material, mounts and service requirements often dictate the final design choice for a particular application, the composite flywheels in this paper are classified within a geometric framework, a simple stress analysis of a circular disk is carried out

    Sum-Rule Inequalities and a Toy Model Paradox

    Get PDF
    Fundamental inequalities for QCD sum-rules are applied to resolve a paradox recently encountered in a sum-rule calculation. This paradox was encountered in a toy model known to be free of resonances that yields an apparent resonance using a standard sum-rule stability analysis. Application of the inequalities does not support the existence of a well defined sum-rule calculation, and shows a strong distinction from typical behaviour in QCD.Comment: 6 pages, RevTeX, figures available upon request to [email protected]

    Condition monitoring and prognostic indicators for network reliability

    No full text
    Large-scale investment in transmission and distribution networks are planned over the next 10-15 years to meet future demand and changes in power generation. However, it is important that existing assets continue to operate reliably and their health maintained. A research project is considering the increased use of simulation models that could provide accurate prognostics, targeting maintenance and reduce in service failures. Such models could be further refined with parameters obtained from on-line measurements at the asset. It is also important to consider the future development of the research agenda for condition monitoring of power networks and with colleagues from National Grid, PPA Energy and the Universities of Manchester and Strathclyde, the research team are preparing a Position Paper on this subject

    Novel Rubidium Poly-Nitrogen Materials at High Pressure

    Full text link
    First-principles crystal structure search is performed to predict novel rubidium poly-nitrogen materials at high pressure by varying the stoichiometry, i. e. relative quantities of the constituent rubidium and nitrogen atoms. Three compounds of high nitrogen content, RbN_{5}, RbN_{2}, and Rb_{4}N_{6}, are discovered. Rubidium pentazolate (RbN5) becomes thermodynamically stable at pressures above \unit[30]{GPa}. The charge transfer from Rb to N atoms enables aromaticity in cyclo-N_{^{_{5}}}^{-} while increasing the ionic bonding in the crystal. Rubidium pentazolate can be synthesized by compressing rubidium azide (RbN3) and nitrogen (N2) precursors above \unit[9.42]{GPa}, and its experimental discovery is aided by calculating the Raman spectrum and identifying the features attributed to N_{^{_{5}}}^{-} modes. The two other interesting compounds, RbN2 containing infinitely-long single-bonded nitrogen chains, and Rb_{4}N_{6} consisting of single-bonded N_{6} hexazine rings, become thermodynamically stable at pressures exceeding \unit[60]{GPa}. In addition to the compounds with high nitrogen content, Rb_{3}N_{3}, a new compound with 1:1 RbN stoichiometry containing bent N_{3} azides is found to exist at high pressures

    Calculating the inherent visual structure of a landscape (inherent viewshed) using high-throughput computing

    Get PDF
    This paper describes a method of calculating the inherent visibility at all locations in a landscape (‘total viewshed’) by making use of redundant computer cycles. This approach uses a simplified viewshed program that is suitable for use within a distributed environment, in this case managed by the Condor system. Distributing the calculation in this way reduced the calculation time of our example from an estimated 34 days to slightly over 25 hours using a cluster of 43 workstations. Finally, we discuss the example ‘total viewshed’ raster for the Avebury region, and briefly highlight some of its implications

    Transferable neural networks for enhanced sampling of protein dynamics

    Full text link
    Variational auto-encoder frameworks have demonstrated success in reducing complex nonlinear dynamics in molecular simulation to a single non-linear embedding. In this work, we illustrate how this non-linear latent embedding can be used as a collective variable for enhanced sampling, and present a simple modification that allows us to rapidly perform sampling in multiple related systems. We first demonstrate our method is able to describe the effects of force field changes in capped alanine dipeptide after learning a model using AMBER99. We further provide a simple extension to variational dynamics encoders that allows the model to be trained in a more efficient manner on larger systems by encoding the outputs of a linear transformation using time-structure based independent component analysis (tICA). Using this technique, we show how such a model trained for one protein, the WW domain, can efficiently be transferred to perform enhanced sampling on a related mutant protein, the GTT mutation. This method shows promise for its ability to rapidly sample related systems using a single transferable collective variable and is generally applicable to sets of related simulations, enabling us to probe the effects of variation in increasingly large systems of biophysical interest.Comment: 20 pages, 10 figure

    Trace Element Composition of Stream Sediments an Integrating Factor for Water Quality

    Get PDF
    Bottom sediments, suspended sediments, and water were sampled along 130 miles of the Buffalo River in northern Arkansas. The water and acid extracts of the suspended sediments and the minus 95 mesh fraction of the bottom sediments were analyzed by atomic absorption spectrometry. All samples were analyzed for Na, K, Mg, Ca, Zn, Cd, Cu, Pb, Fe, Co, Cr, Ni, and Mn. Selected bottom samples also were analyzed by As, Hg, and Zr. Zr was determined by x-ray fluorescence. Li and Sr were determined for selected water and suspended sediment samples. There is a general decrease downstream in Fe, Cu, Cr, Ni, Mn, Pb, K, and Na in the bottom sediments as the drainage area increases in carbonate rock and decreases in shale. The elements Mg, Ca, Zn, and Cd increase in bottom sediments downstream. The values for these elements in the water, especially the major elements, also correspond closely with the geology of the region. Tributaries are sites of abrupt rise and fall of metal values, within a few miles, from background to anomalously high values to background, especially tributaries draining Zn and Pb mineralized areas. The bottom sediments are mainly quartz and chert grains. These grains apparently are coated with hydrous iron oxide which acts as a sorbent for many of the elements and is a dominant transport mechanism for acid extractable Co, Cr, Ni, Cu, Mn, and K. Other acid extractable metals, particularly Mg, Ca, Zn, Cd, and Pb, are mostly in clastic grains. Graphic representation of the Langmuir equation for Mn is consistent with adsorption of Mn by iron in both bottom sediments and suspended sediments. On the basis of the volume of water collected, all the elements except Fe are more concentrated in the water than in the suspended sediments. Fe concentration of the suspended sediments increases with increasing flow because the suspended load is increased. The Mn/Fe ratio of the suspended sediments is approximately equal to or greater than that of the bottom sediments. The Mn/Fe ratio of suspended sediments relative to that of the bottom sediments increases downstream, possibly because of an autocatalytic effect of Mn precipitation. The relationship between sediment and water concentrations is not clear from the data because of the restricted concentration ranges for some elements in the suspended sediment and water. The sediment from the Buffalo River can be used to estimate grossly the concentration of elements in the water
    corecore