2,004 research outputs found

    New insights on the matter-gravity coupling paradigm

    Full text link
    The coupling between matter and gravity in General Relativity is given by a proportionality relation between the stress tensor and the geometry. This is an oriented assumption driven by the fact that both the stress tensor and the Einstein tensor are divergenceless. However, General Relativity is in essence a nonlinear theory, so there is no obvious reason why the coupling to matter should be linear. On another hand, modified theories of gravity usually affect the vacuum dynamics, yet keep the coupling to matter linear. In this Letter we address the implications of consistent nonlinear gravity/matter coupling. The Eddington inspired Born-Infeld theory recently introduced by Banados and Ferreira provides an enlightening realization of such coupling modifications. We find that this theory coupled to a perfect fluid reduces to General Relativity coupled to a nonlinearly modified perfect fluid, leading to an ambiguity between modified coupling and modified equation of state. We discuss observational consequences of this degeneracy and argue that such a completion of General Relativity is viable from both an experimental and theoretical point of view through energy conditions, consistency, and singularity-avoidance perspectives. We use these results to discuss the impact of changing the coupling paradigm.Comment: 6 pages, 2 figures, v2: revised version, v3: published versio

    State reconstruction of finite dimensional compound systems via local projective measurements and one-way classical communication

    Get PDF
    For a finite dimensional discrete bipartite system, we find the relation between local projections performed by Alice, and Bob post-selected state dependence on the global state submatrices. With this result the joint state reconstruction problem for a bipartite system can be solved with strict local projections and one-way classical communication. The generalization to multipartite systems is straightforward.Comment: 4 pages, 1 figur

    Reduced Hamiltonian for next-to-leading order Spin-Squared Dynamics of General Compact Binaries

    Full text link
    Within the post Newtonian framework the fully reduced Hamiltonian (i.e., with eliminated spin supplementary condition) for the next-to-leading order spin-squared dynamics of general compact binaries is presented. The Hamiltonian is applicable to the spin dynamics of all kinds of binaries with self-gravitating components like black holes and/or neutron stars taking into account spin-induced quadrupolar deformation effects in second post-Newtonian order perturbation theory of Einstein's field equations. The corresponding equations of motion for spin, position and momentum variables are given in terms of canonical Poisson brackets. Comparison with a nonreduced potential calculated within the Effective Field Theory approach is made.Comment: 11 pages, minor changes to match published version at CQ

    On the comparison of results regarding the post-Newtonian approximate treatment of the dynamics of extended spinning compact binaries

    Get PDF
    A brief review is given of all the Hamiltonians and effective potentials calculated hitherto covering the post-Newtonian (pN) dynamics of a two body system. A method is presented to compare (conservative) reduced Hamiltonians with nonreduced potentials directly at least up to the next-to-leading-pN order.Comment: Conference proceedings for the 7th International Conference on Gravitation and Cosmology (ICGC2011), 4 page

    Bipartite bound entanglement in continuous variables through deGaussification

    Full text link
    We introduce a class of bipartite entangled continuous variable states that are positive under partial transposition operation, i.e., PPT bound entangled. These states are based on realistic preparation procedures in optical systems, being thus a feasible option to generate and observe genuinely bipartite bound entanglement in high precision experiments. One fundamental step in our scheme is to perform a non-Gaussian operation over a single-mode Gaussian state; this deGaussification procedure is achieved through a modified single-photon addition, which is a procedure that has currently being investigated in diverse optical setups. Although dependent on a single-photon detection in a idler channel, the preparation can be made unconditional after a calibration of the apparatus. The detection and proof of bound entanglement is made by means of the Range Criterion, theory of Hankel operators and Gerschgorin Disk s perturbation theorems.Comment: 8 pages, 1 figur

    Isotopic evidence for biogenic molecular hydrogen production in the Atlantic Ocean

    Get PDF
    Oceans are a net source of molecular hydrogen (H2) to the atmosphere. The production of marine H2 is assumed to be mainly biological by N2 fixation, but photochemical pathways are also discussed. We present measurements of mole fraction and isotopic composition of dissolved and atmospheric H2 from the southern and northern Atlantic between 2008 and 2010. In total almost 400 samples were taken during five cruises along a transect between Punta Arenas (Chile) and Bremerhaven (Germany), as well as at the coast of Mauretania. The isotopic source signatures of dissolved H2 extracted from surface water are highly deuterium-depleted and correlate negatively with temperature, showing δD values of (−629 ± 54) ‰ for water temperatures at (27 ± 3) °C and (−249 ± 88) ‰ below (19 ± 1) °C. The results for warmer water masses are consistent with biological production of H2. This is the first time that marine H2 excess has been directly attributed to biological production by isotope measurements. However, the isotope values obtained in the colder water masses indicate that beside possible biological production a significant different source should be considered. The atmospheric measurements show distinct differences between both hemispheres as well as between seasons. Results from the global chemistry transport model TM5 reproduce the measured H2 mole fractions and isotopic composition well. The climatological global oceanic emissions from the GEMS database are in line with our data and previously published flux calculations. The good agreement between measurements and model results demonstrates that both the magnitude and the isotopic signature of the main components of the marine H2 cycle are in general adequately represented in current atmospheric models despite a proposed source different from biological production or a substantial underestimation of nitrogen fixation by several authors
    corecore